Computational Complexity/
Tractable and Intractable Problems

ELEC 5402

Pavan Gunupudi

Dept. of Electronics, Carleton University

January 6, 2012
Computational Complexity

- Main concern of an algorithm is how fast it will run and how much memory it will take
- Theory of computational complexity helps us compare complexity of algorithms
- It characterizes the rate of growth of an algorithm with respect to (w.r.t) its input size (n)
- Input size or problem size is related to the number of symbols necessary to describe an input
Example

- Sort list of n words; each with at most 10 letters
- Input size is bounded by 10n; if you include 8 bits for a letter we get 80n
- The constant is usually a function of the implementation: so we eliminate it
- The input size is said to be n for this algorithm
Example

- An algorithm takes input as a single natural number n using binary encoding

<table>
<thead>
<tr>
<th>n</th>
<th>Bin</th>
<th>Siz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>4</td>
</tr>
</tbody>
</table>
Time/Space Complexity

• Two types of computational complexity
 • Time complexity
 • Space complexity

• Space complexity given less importance than time complexity

• Caveat: An algorithm requiring more memory than required will not run at all

• Most comments made for time complexity also hold for space complexity

• For the rest of the course when we use the word “complexity” we refer to time complexity
Order of a function

Given two functions f and g that map a natural number n to a positive value

$$f(n) = \mathcal{O}(g(n))$$

if a K can be found such that

$$\forall n \geq n_0 : f(n) \leq Kg(n)$$

The $=$ sign indicates set membership

1pronounced as “$f(n)$ is big O of $g(n)$” or as “$f(n)$ is of order at most $g(n)$”
Order.. Examples

Examples:

\[
\frac{1}{3}n^2 = O(n^2) \quad (1)
\]

\[
0.02n^2 + 127n + 1923 = O(n^2) \quad (2)
\]

\[
3n \log n + n = O(n \log n) \quad (3)
\]

\[
5n^3 = O\left(\frac{1}{5}n^3\right) \quad (4)
\]

\[
5n^3 = O(n^4) \quad (5)
\]

\[
5n^3 = O(n^3 + n^2) \quad (6)
\]
Other notations of bounds

Lower bound, big-Omega is used: \(f(n) = \Omega(g(n)) \) \(^1\) if
\(g(n) = \mathcal{O}(f(n)) \)

Two functions have same rate of growth: \(f(n) = \Theta(g(n)) \) \(^2\) if
\(f(n) = \mathcal{O}(g(n)) \) and \(g(n) = \mathcal{O}(f(n)) \)

Generally big O is enough to describe computational complexity

\(^1\) pronounced as “\(f(n) \) is big Omega of \(g(n) \)” or as “\(f(n) \) is of order at least \(g(n) \)”
\(^2\) pronounced as “\(f(n) \) is big Theta of \(g(n) \)” or as “\(f(n) \) is of order exactly \(g(n) \)”
Elementary Computational Steps

• The big O does not give an idea of the time duration of the computation
• It just gives how the durations scales with input size
• The duration of a computation is expressed in terms of elementary computational steps
• Elementary computational step is a simple computation that is independent of input size e.g. multiplication of two 16 bit integers
Time Complexity

- Time complexity is a function that gives the number of elementary computational steps executed for inputs of a specific size e.g. number of floating point operations
- This can vary in an algorithm due to conditional branches
- **Worst-case time complexity** has to be considered
- **Average-case time complexity** can also be computed; it is very useful; however complicated to evaluate
- We consider worst case time complexity in general
Types of Complexity

- Linear vs quadratic
 - Say you have a circuit with a million nodes
 - Linear order methods are definitely better than quadratic order methods

- Sublinear order
 - Sometimes we may not have to process all elements to get the result we want; this leads to algorithms with sublinear order
 - e.g. Finding an element in a sorted list - $O(\log n)$
 - Algorithm is independent of input size - $O(1)$

- Polynomial order vs. exponential order
 - Exponential grows very fast w.r.t polynomial order
 - Defines tractable from intractable problems
Time Complexity of a Top-Level Algorithm

- Time complexities of entire algorithm are sum of time complexities of each part
- For conditional statements such as ‘if’; complexity is sum of both the ‘then’ and ‘else’ part
- Some rules for multiplication and addition

\[
\begin{align*}
 f_1 &= \mathcal{O}(g_1) \quad f_2 = \mathcal{O}(g_2) \\
 f_1 \times f_2 &= \mathcal{O}(g_1 \times g_2) \\
 f_1 + f_2 &= \mathcal{O}(g_1 + g_2)
\end{align*}
\]

- For addition it is followed by a simplification if \(g_1 \) or \(g_2 \) is of a lower order than the other
Tractable and Intractable Problems

- Algorithms solvable in polynomial time complexity $O(n^k)$ are called \textit{tractable}.
- If an algorithm cannot be solved with polynomial time complexity it is called \textit{intractable}.
Nondeterministic computer

- Nondeterministic computer: A computer that allows for specification of multiple computations at a certain point in the program: the computer will make a nondeterministic choice on which of them to perform.
- This is not a random choice but that which will lead to the desired answer
- Another way to look at it: At the point where choice is to be made:
 - The computer splits itself into the number of choices present
 - Evaluates all choices in parallel
 - Then merges back into one machine choosing the correct choice to be picked
- Intuitively speaking, the nondeterministic computer has the ability to guess the right choice in constant time
Complexity Classes

- An algorithm that can be solved in a polynomial time complexity on a *deterministic computer* belongs to the class P (abbreviation for ‘polynomial’)
- An algorithm that can be solved in a polynomial time complexity on a *nondeterministic computer* belongs to the class NP (abbreviation for ‘nondeterministic polynomial’)
- Anything that can be solved in polynomial time on a deterministic computer can be solved in polynomial time on a nondeterministic computer
- Hence, $P \subset NP$
Within NP, there is a special class called NPC (NP-Complete).

Any algorithm in NPC can be reduced to another problem in NPC with polynomial time complexity.

If even one algorithm in NPC can be found to be solved in polynomial time complexity then all algorithms can be solved in polynomial time complexity.

If above is true: $NPC = P$ will hold.

Till now no one had found even one algorithm that is both in P and NPC.
NP-HARD

- Algorithms with complexity at least as much as an NP-Complete problem are called *NP-hard*
- NP-complete problems form a lower bound in complexity for NP-hard problems
- Most problems in CAD for VLSI are NP-hard or NP-Complete
Classification of Decision Problems

- all decision problems
 - NPC
 - NP
 - P