For assignment 1, we needed to match impedance with a parallel, transformer based circuit. If we continue the Lab 1 example, which we did at 1 MHz (note your results will be different at 8 MHz) we had found the input impedance to be $\mathrm{Zin}=323.771-\mathrm{j} 872.113$. To do a parallel match, need $\mathrm{Yin}=1 / \mathrm{Zin}$ $Y_{i n}=\frac{1}{Z_{\text {in }}}=\frac{1}{323.771-j 872.113}=0.374 \mathrm{~m}+j 1.008 \mathrm{~m}$

As an aside in case you have forgotten how to take the inverse of a complex number - Either (1) multiply top and bottom by the complex conjugate (323.771+j872.113) or (2) convert to magnitude and angle (930.273 angle -69.633 degrees), take the inverse of the magnitude (1.075m) and the negative of the angle (+69.633 degrees) convert back to rectangular $(0.374 \mathrm{~m}+\mathrm{j} 1.008 \mathrm{~m})$ in agreement with the above.
$Y_{\text {in }}$ represents a parallel resistor (roughly equal to r_{π}) parallel to a parallel capacitor (roughly equal to c_{π} gain $\mathrm{X} c_{\mu}$).
$Y_{\text {in }}=1 / \mathrm{R}_{\mathrm{amp}}+\mathrm{j} \omega \mathrm{C}_{\text {amp }}$, or $\mathrm{R}_{\mathrm{amp}}=2674 \Omega$, and $C_{\text {amp }}=160.0 \mathrm{pF}$.
So, we will be matching 50Ω to 2674Ω, requiring a turns ratio of $\frac{N_{2}}{N_{1}}=\sqrt{\frac{2674}{50}}=7.313$
Now to get the correct bandwidth, the resistance seen on the N_{2} side of the transformer will be $R_{a m p}$ of 2674 Ohms and the transformed resistance from the 50 Ohm source which will transform to exactly 2674 Ohms so the resistance is $2674 / 2$ or $\mathrm{R}_{\text {total }}=1337$ Ohms.
Since $\mathrm{BW}=1 / \mathrm{R}_{\text {total }} \mathrm{C}_{\text {total }}$ and since the example shown happened to have 325 kHz bandwidth, let's do that here as well - of course, your bandwidth (and centre frequency) will be different. Thus, be $2 \pi \times 325$ $\mathrm{kHz}=1 / \mathrm{R}_{\text {total }} \mathrm{C}_{\text {total }}$ and $\mathrm{C}_{\text {total }}$ can be calculated to be 366 pF . Fortunately, this is bigger than $\mathrm{C}_{\text {amp }}$ thus we need to add $\mathrm{C}_{\text {add }}=366-160=206 \mathrm{pF}$.
Then, inductance L can be found from the required centre frequency knowing that

$$
2 \pi \times 1 M=\frac{1}{\sqrt{L C_{\text {total }}}} \text { or } L=\frac{1}{(2 \pi \times 1 M)^{2} C_{\text {total }}}=69.21 \mu H
$$

Now, the design is complete, except that we were supposed to take into account that all inductors, including the transformer have a Q of 50 . Thus, knowing L , we can calculate the parallel resistance $\mathrm{R}_{\mathrm{p}}=$ $\mathrm{Q} \omega \mathrm{L}=50 \times 2 \pi \times 1 \mathrm{M} \times 69.21 \mu \mathrm{H}=21.68 \mathrm{k}$. Thus we are trying to match to $\mathrm{R}_{\mathrm{p}} \| \mathrm{R}_{\mathrm{amp}}=2451 \Omega$.
Fortunately, this hasn't changed the numbers much, but that could be different in your case at 8 MHz . Now we need to go through the calculations again: $\mathrm{R}_{\text {total }}=2451 / 2=1226 . \mathrm{C}_{\text {total }}=399.4 \mathrm{pF}, \mathrm{L}=63.42 \mathrm{uH}$. As a result the new R_{p} is $19.92 k$.

For the output transformer, we replace the load resistor R_{L} with 50Ω, through a transformer with turns ratio $\frac{N_{4}}{N_{3}}=\sqrt{\frac{50}{R_{L}}}$ (in the original circuit, R_{L} was 3 k).

Total Gain from source to output is:
$A_{v}=\frac{1}{2} \frac{N_{2}}{N_{1}} g_{m} R_{\text {LTotal }} \cdot \frac{N_{4}}{N_{3}}$ where $R_{L \text { Total }}=r_{o}\left\|R_{L}\right\| R_{3 \mathrm{p}}$. Here $R_{3 \mathrm{p}}$ is the parallel resistance of the N_{3} side of the transformer. We are ignoring the inductance of the N_{4} side. Note, if input voltage is defined not as the source, but directly at the N_{1} side of the transformer, then the factor of $1 / 2$ would be left out.

Bandwidth of the two circuits combined will be narrower and are given by the formula in the notes result, new bandwidth is narrower by a factor of 0.6423 , so new bandwidth is $325 \times 0.6423=209 \mathrm{kHz}$.

