CARLETON UNIVERSITY

EXAMINATION
December 2013

Department Name \& Course Number: Electronics ELEC 5705
Course Instructor(s): Prof. John W. M. Rogers
AUTHORIZED MEMORANDA
Calculators, Course Notes
Students MUST count the number of pages in this examination question paper before beginning to write, and report any discrepancy immediately to a proctor. This question paper has 5 pages.

This examination question paper MAY be taken from the examination room.

Information and Instructions:

1. Attempt all questions.
2. Show all analysis.
3. The exam marks total 100.

Potentially Useful Equations:

$$
\begin{aligned}
& v_{D S ~ S a t}=v_{G S}-V_{T}, V=I R, C=\frac{q}{V}, i_{D}=\frac{1}{2}\left(\mu C_{o x}\right)\left(\frac{W}{L}\right)\left(v_{G S}-V_{T}\right)^{2} \\
& v_{D S ~ S a t}=v_{G S}-V_{T}=\sqrt{\frac{2 i_{D}}{\mu C_{o x}}\left(\frac{L}{W}\right)}, E=m c^{2}, c=\frac{1}{\sqrt{\mu \varepsilon}} \\
& r_{D S}=\frac{1}{\lambda I_{D S}}, i_{n d}{ }^{2}=4 k T\left(\frac{2}{3}\right) g_{m}, \mathrm{kT}=4 \cdot 10^{-21} \mathrm{~W} / \mathrm{Hz} \text { at } \mathrm{T}=290 \mathrm{~K}, \mathrm{q}=1.6 \cdot 10^{-19} \mathrm{C} \\
& g_{m}=\sqrt{2 \mu C_{o x}\left(\frac{W}{L}\right) I_{D S}}, \Gamma=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}, \nabla \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t} \\
& a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}, \text { Money }=\text { Power }=V I=I^{2} R=\sqrt{E v i l}, R_{o n}=R \cdot \frac{L}{W} \\
& \quad \alpha=\frac{1}{(1+\Delta A) \cos \left(\phi_{e}\right)} \quad \Delta A=\frac{-2\left(Q_{d} Q_{i m}+I_{d} I_{i m}\right)}{I_{d}{ }^{2}+Q_{d}{ }^{2}} \quad \phi_{e}=2 \tan ^{-1}\left[\frac{Q_{d} I_{i m}-I_{d} Q_{i m}}{Q_{d}{ }^{2}+I_{d}{ }^{2}}\right] \\
& \quad \beta=-\tan \left(\phi_{e}\right) \quad, \quad,
\end{aligned}
$$

Question 1 (Total 25 Marks)

(a) Write an expression to describe an amplifier that has a gain of 10 dB , an IIP2 of 20 dBm , and an IIP 3 of -10 dBm .
(b) Write an expression for a 2 GHz LO with a 1 V peak amplitude and a phase noise of $-80 \mathrm{dBc} / \mathrm{Hz}$ at all offset frequencies.
(c) A signal is modulated with BPSK and has an RF bandwidth of 1 MHz . What is the BER if -104 dBm of power is received in a radio with a 5 dB NF ?

Question 2 (Total 25 Marks)

A low IF radio is shown below.

The radio must be able to handle signals from -80 to -30 dBm with an SNR of 15 dB . The A/D should have a 1 V input signal. Received signals in the band of 2 GHz with a bandwidth of 5 MHz . The IF is at 10 MHz . Fill in the following table so that the radio will operate properly:

Component	Parameters
LNA	Gain: 15 dB NF: \qquad dB
RF Mixers	Voltage Gain: 5 dB NF: 10 dB IIP3: \qquad dBm
AGC	Voltage Gain Range: \qquad dB AGC gain mismatch: 1%
IF Amplifier	Voltage Gain Range: \qquad dB NF: 15 dB IIP3: -20dBm
ADC	Input voltage: 1 Vpp Sampling frequency: 40 MHz Number of Bits: \qquad Clock timing jitter: \qquad
LO	LO Frequency: $1.9-2 \mathrm{GHz}$ LO Step Size: 5 MHz LO Phase noise: \qquad @ \qquad KHz offset IQ phase mismatch: 3degrees
BBSP	α : \qquad β : \qquad

Question 3 (Total 25 Marks)

A transmitter is required to provide 20 dBm of output power. It uses 16 QAM OFDM modulation with 64 subcarriers. The RF bandwidth is 1 MHz .
(a) What distance will the link work over if an SNR of 15 dB is required?
(b) What is the linearity required to provide an ACPR of 40 dB ?
(c) What in band phase noise is required for an EVM of 15 dB ?
(d) What is the required linearity of the PA?
(e) How would we fix the EVM caused by phase shift through the base band filter as discussed in class? Give a word answer only.

Question 4 (Total 25 Marks)

(a) Design a fractional N frequency synthesizer with a $\mathrm{KVCO}=200 \mathrm{MHz} / \mathrm{V}$ a CP current of 1 mA and a XTAL frequency of 10 MHz to produce an output frequency of 1.5 GHz with a natural frequency of 300 kHz and a damping constant of 0.707 .
(b) What is the settling time of the synthesizer assuming no cycle slip?
(c) Now change the fractional N synthesizer into a ADPLL like the one shown below.

(d) At what frequency step size will your ADPLL start to cycle slip?
(e) If the TDC resolution is 10 ps estimate the phase noise of your design.

