CARLETON UNIVERSITY

FINAL **EXAMINATION** April 2013

DURATION 3 HOURS

No. of Students 3

Department Name & Course Number: Electronics ELEC 5705 Course Instructor(s): Prof. John W. M. Rogers

	AUTHORIZE	ED MEMORAN	DA Calculators, Course Notes
St	tudents	MUST	count the number of pages in this examination question paper before beginnin

to write, and report any discrepancy immediately to a proctor. This question paper has 5 pages.

This examination question paper MAY $\;$ be taken from the examination room.

Information and Instructions:

- 1. Attempt all questions.
- 2. Show all analysis.
- 3. The exam marks total 100.

Potentially Useful Equations:

$$\begin{aligned} v_{DS \ Sat} &= v_{GS} - V_T, \ V = IR, \ C = \frac{q}{V}, \ i_D = \frac{1}{2} \left(\mu C_{ox} \left(\frac{W}{L} \right) (v_{GS} - V_T)^2 \right) \\ v_{DS \ Sat} &= v_{GS} - V_T = \sqrt{\frac{2i_D}{\mu C_{ox}} \left(\frac{L}{W} \right)}, \ E = mc^2, \ c = \frac{1}{\sqrt{\mu \varepsilon}} \\ r_{DS} &= \frac{1}{\lambda I_{DS}}, \ i_{nd}^2 = 4kT \left(\frac{2}{3} \right) g_m, \ kT = 4 \cdot 10^{-21} \text{W/Hz at } T = 290 \text{K}, \ q = 1.6 \cdot 10^{-19} \text{C} \end{aligned}$$

$$g_m &= \sqrt{2\mu C_{ox} \left(\frac{W}{L} \right) I_{DS}}, \ \Gamma = \frac{Z_L - Z_o}{Z_L + Z_o}, \ \nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t} \\ a &= \frac{dv}{dt} = \frac{d^2 x}{dt^2}, \ Money = Power = VI = I^2 R = \sqrt{Evil}, \ R_{on} = R \cdot \frac{L}{W} \\ \alpha &= \frac{1}{(1 + \Delta A) \cos(\phi_e)}, \ \Delta A = \frac{-2(Q_d Q_{im} + I_d I_{im})}{I_d^2 + Q_d^2}, \ \phi_e = 2 \tan^{-1} \left[\frac{Q_d I_{im} - I_d Q_{im}}{Q_d^2 + I_d^2} \right] \\ \beta &= -\tan(\phi_e) \end{aligned}$$

Question 1 (Total 25 Marks)

(a) A nonlinear amplifier with $k_1 = 2$, $k_2 = 0$, and $k_3 = 0.02$ is driven with: $v_{in} = x \cdot \cos[2\pi (10MHz)t]$

If the amplifier is matched to 50Ω at the input and the output at what value of *x* will the amplifier reach its 1dB compression point? What will be the value of the output 1dB compression point in dBm?

- (b) Write an expression for a 1GHz LO with a 1V peak amplitude and spurs at 60dBc at 40MHz offset.
- (c) A signal is modulated with 64QAM and has an RF bandwidth of 1MHz. What power level can be received with a BER of 10^{-3} ?

Question 2 (Total 25 Marks)

A simple superhertodyne radio is shown below.

You must design the components of the radio to deliver a signal to the base band with a SNR of at least 10dB. Channels have a bandwidth of 20MHz and can have power levels from -80dBm to -30dBm. Image signals can be as high as -10dBm. In order to do this fill in the following table at a minimum:

Component	Parameters
LNA	Gain: 15 dB
	NF:dB
	IIP3:dBm
Image Filter	Insertion Loss: 0dB
	Passband: 2.1GHz
	Bandwidth: 200MHz
	Attenuation at 3GHz:
RF Mixer	Voltage Gain: 5 dB
	NF: 10 dB
	IIP3:dBm
IF Filter	Insertion Loss: 0dB
	Passband: 400MHz
	Bandwidth: 20MHz
	Attenuation:dB
IF Amplifier	Voltage Gain Range: dB
	NF: 15 dB
	IIP3: -20dBm
ADC	Input voltage: 1Vpp
	Sampling frequency: 40MHz
	Number of Bits: 10
	Clock timing jitter:

Question 3 (Total 25 Marks)

A transmitter is designed to put out a power of 33dBm. At the same time a receiver is expected to receive a signal at -70dBm at a frequency 100MHz away. The phase noise of the transmit LO is -160dBc/Hz at 100MHz offset. 16QAM OFDM modulation with 64 subcarriers is used with a bandwidth of 10MHz.

- (a) Specify the performance level of the duplexor for this radio.
- (b) What is the required linearity of the transmitter to have an EVM of 25dB?
- (c) What is the required linearity of the transmitter to provide an ACPR of -40dBc?
- (d) What is the in band phase noise requirement of the LO?

Question 4 (Total 25 Marks)

Consider an all-digital phase locked loop like the one shown below.

- (a) What phase noise would be required for the radio in question #2?
- (b) If a 1MHz reference is used what is the required TDC resolution?
- (c) What resolution is required for the DCO?
- (d) If the natural frequency of the loop is set to 200kHz, and Kphase = $10^{-3}/2\pi$ and $K_{DCO} = 200MHz/unit$ design this loop.