CARLETON UNIVERSITY

FINAL
EXAMINATION
April 2011

DURATION 3 HOURS
No. of Students 8
Department Name \& Course Number: Electronics ELEC 5705
Course Instructor(s): Prof. John W. M. Rogers
AUTHORIZED MEMORANDA
Calculators, Course Notes
Students MUST count the number of pages in this examination question paper before beginning to write, and report any discrepancy immediately to a proctor. This question paper has 6 pages.

This examination question paper MAY be taken from the examination room.

Information and Instructions:

1. Attempt all questions.
2. Show all analysis.
3. The exam marks total 100.

Potentially Useful Equations:
$v_{D S} S a t$
$=v_{G S}-V_{T}, V=I R, C=\frac{q}{V}, i_{D}=\frac{1}{2}\left(\mu C_{o x}\right)\left(\frac{W}{L}\right)\left(v_{G S}-V_{T}\right)^{2}$
$v_{D S} S a t$
$=v_{G S}-V_{T}=\sqrt{\frac{2 i_{D}}{\mu C_{o x}}\left(\frac{L}{W}\right)}, E=m c^{2}, c=\frac{1}{\sqrt{\mu \varepsilon}}$
$r_{D S}=\frac{1}{\lambda I_{D S}}, i_{n d}^{2}=4 k T\left(\frac{2}{3}\right) g_{m}, \mathrm{kT}=4 \cdot 10^{-21} \mathrm{~W} / \mathrm{Hz}$ at $\mathrm{T}=290 \mathrm{~K}, \mathrm{q}=1.6 \cdot 10^{-19} \mathrm{C}$
$g_{m}=\sqrt{2 \mu C_{o x}\left(\frac{W}{L}\right) I_{D S}}, \Gamma=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}, \nabla \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t}$
$a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$, Money $=$ Power $=V I=I^{2} R=\sqrt{E v i l}$
$R_{o n}=R \cdot \frac{L}{W}$

Question 1 (Total 25 Marks) (To be completed while juggling pinless hand grenades.)
You are to design a communications link to operate in an urban environment. The link is to be able to transmit over a distance of 10 km with a BER of 10^{-3}. The bandwidth available for the link is 10 MHz at 2 GHz . Five simultaneous conversations must be able to take place. The data rate is to be $3.5 \mathrm{MBits} / \mathrm{s}$. The receiver in this system can be designed to have a noise figure of 8 dB . Determine:
a) The required transmit power.
b) The style of OFDM modulation you would need. Assume 25 subcarriers are used
c) The number of subcarriers required to carry data.
d) Two alternate uses for the subcarriers (specify which sub carriers) other than carrying data.
e) Two advantages of OFDM over single carrier and one disadvantage.
f) Why no guard band is required between subcarriers.

Question 2 (Total 25 Marks) (To be completed while dodging boiling hot pizza slices being thrown at your head by Steven Harper.)

The following signals are fed into a radio receiver. The bandwidth of the signal is 50 kHz , but spaced every 1 MHz .

The receiver block diagram is shown below:

You must design the components of the radio to deliver a signal to the base band with a SNR of at least 10 dB . In order to do this fill in the following table at a minimum:

Component	Parameters
LNA	Gain: 15 dB NF: \qquad dB IIP3: -5dBm
Image Filter	Insertion Loss: 2 dB Passband: 2GHz Bandwidth: 10 MHz Attenuation at 3GHz:
RF Mixer	Voltage Gain: 3 dB NF: 10 dB IIP3: \qquad dBm
IF Filter	Insertion Loss: 2dB Passband: 500 MHz Bandwidth: \qquad MHz Attenuation at 1 MHz offset: \qquad Attenuation at 3MHz offset: \qquad
IF Amplifier	Voltage Gain: \qquad dB NF: 15 dB IIP3: \qquad dBm
ADC	Input voltage: 1 Vpp Sampling frequency: 1 MHz Number of Bits: \qquad Clock Jitter: \qquad
RF Synthesizer	Adjacent channel spur level: \ldots dBc

Question 3 (Total 25 Marks) (To be completed while driving a car loaded with dynamite directly into the sun.)

The following transmitter is to be used in a full duplex transceiver. The Tx band is to be $4.0-4.05 \mathrm{GHz}$ and the Rx band is to be $4.1-4.15 \mathrm{GHz}$. The system is to use a 64 subcarrier OFDM modulation with an RF bandwidth of 5 MHz . You must specify: RF and IF frequency synthesizer frequencies, IQ phase matching, phase noise (must be fully specified at all frequencies of importance) and transmitter linearity. The adjacent channel power must be lower than -30 dBc , and the SNR must be greater than 12 dB . The duplexor will provide 30 dB of isolation. The transmit power is to be 20 dBm and the minimum receive power is to be -90 dBm . Name at least one major advantage of this architecture in this situation.

Question 4 (Total 25 Marks) (To be completed while locked in a cage with a cocaine snorting gorilla dressed as a clown.)

Consider a basic all digital phase locked loop like the one shown below.

a) For a reference frequency of 40 MHz , and an output frequency of 2 GHz design the loop to have a damping constant of 0.707 and a natural frequency of 100 kHz .
b) Assume that $\mathrm{FCW}=5.25$ fill out the following table assuming that the TDC is a simple integer counter and the loop is in lock and that at the start the DCO and reference are in phase at the start of the first cycle. Determine the frequency offset of the closest spur.

Reference Cycle	TDC Count	Error	Actual number of DCO cycles since start
1			
2			
3			
4			
5			
6			
7			
8			

c) Assume that $\mathrm{FCW}=5.25$ fill out the following table assuming that the TDC includes a fractional counter. The fractional counter is simple and produces a 1 for more than half a cycle and a zero for less than half a cycle (it has a half cycle resolution). The loop is in lock and that at the start the DCO and reference are in
phase at the start of the first cycle. Determine the frequency offset of the closest spur.

Reference Cycle	TDC Count	Error	Actual number of DCO cycles since start
1			
2			
3			
4			
5			
6			
7			
8			

d) Estimate the in band phase noise produced by a ADPLL in (a) assuming that the resolution of the TDC is 30 ps .
e) What real life property of the DCO could make the calculation done in (d) useless?

