ELEC 2501 Mid Term \#2, Nov. 21 ${ }^{\text {st }}, 2020$

Instructions (READ!!!!!)

1) The exam will last 1.5 hours.
2) This is a closed book exam.
3) Show all work.
4) Your solutions to all problems must fit on six one sided $8 \frac{1}{2} \times 11$ sheets of paper or less.
5) Place a large and very obvious BOX around your final answer for each question.
6) Solutions MUST be uploaded within 15 mins after the exam ends to be counted.
7) There are seven questions. Each is worth equal marks.

Formulas that might be useful:

$\omega=2 \pi f, T=\frac{1}{f^{\prime}} \quad \sqrt{\frac{1}{T_{2}-T_{1}} \int_{T_{1}}^{T_{2}}(f(t))^{2} d t}, i(t)=\frac{d q(t)}{d t} \quad, \quad v=\frac{d w}{d q^{\prime}} p(t)=v(t) \cdot i(t), \quad v=i R$,
$\sum_{j=1}^{N} i_{j}(t)=0, \sum_{j=1}^{N} v_{j}(t)=0, \frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}, R_{S}=R_{1}+R_{2}+\cdots+R_{N}$
$R_{a}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}} R_{b}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}} R_{c}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}$
$R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{b}} R_{2}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{c}} R_{3}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{a}}$
$C=\frac{\epsilon \cdot A}{d}, i=C \frac{d v}{d t}, E(t)=\frac{1}{2} C v^{2}(t), \frac{1}{C_{S}}=\sum_{i=1}^{N} \frac{1}{C_{i}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots+\frac{1}{C_{N}}, C_{P}=\sum_{i=1}^{N} C_{i}$
$v(t)=L \frac{d i(t)}{d t}, E(t)=\frac{1}{2} L i^{2}(t), L_{S}=\sum_{i=1}^{N} L_{i}, \frac{1}{L_{P}}=\sum_{i=1}^{N} \frac{1}{L_{i}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\cdots+\frac{1}{L_{N}}$
$x(t)=K_{1}+K_{2} e^{\frac{-t}{\tau}}, \tau=R C, \tau=\frac{L}{R}$
$Z=R, Z=j \omega L, Z=\frac{1}{j \omega C^{C}}, Z_{S}=Z_{1}+Z_{2}+\cdots+Z_{N}, \frac{1}{Z_{P}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\cdots+\frac{1}{Z_{N}}, Y=\frac{1}{Z^{\prime}}$
$Y_{P}=Y_{1}+Y_{2}+\cdots+Y_{N}, \quad \frac{1}{Y_{S}}=\frac{1}{Y_{1}}+\frac{1}{Y_{2}}+\cdots+\frac{1}{Y_{N}}$
$\omega_{o}=\frac{1}{\sqrt{L C}}, Q=\frac{\omega_{o} L}{R}=\frac{1}{\omega_{o} C R}=\frac{1}{R} \sqrt{\frac{L}{C}}, \omega_{L O}=\omega_{o}\left[\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right] \omega_{H I}=\omega_{o}\left[\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right]$
$B W=\omega_{H I}-\omega_{L O}=\frac{\omega_{O}}{Q}, \omega_{H I} \cdot \omega_{L O}=\omega_{o}{ }^{2}, Q=2 \pi \frac{\omega_{S}}{\omega_{D}}, \omega_{r}=\sqrt{\frac{1}{L C}-\left(\frac{R}{L}\right)^{2}}$
$P=\frac{V_{M} I_{M}}{2} \cos \left(\theta_{v}-\theta_{i}\right)=V_{R M S} I_{R M S} \cos \left(\theta_{v}-\theta_{i}\right), P F=\cos \left(\theta_{v}-\theta_{i}\right)=\cos \left(\theta_{Z_{L}}\right)=\cos \left(-\theta_{Z_{L}}\right)$,
$S=V_{R M S} I_{R M S}{ }^{*}, \frac{i_{1}}{i_{2}}=\frac{v_{2}}{v_{1}}=\frac{N_{2}}{N_{1}}, Z_{p}=\left(\frac{N_{p}}{N_{s}}\right)^{2} Z_{s}$

1) At angular frequency of $1000 \mathrm{rad} / \mathrm{s}$, the complex impedance between terminals A and B is $Z_{A B}=3+j Y \Omega$. What is the complex impedance $Z_{A B}$ at an angular frequency of $1500 \mathrm{rad} / \mathrm{s}$? Note that Y is the last digit of your student number, if your student number ends with a zero then $Y=10$.

2) Find the Thevenin equivalent circuit between points C and D. Note that x is the last digit of your student number.

3) Find the complex impedance $Z_{A B}$ in the network shown. The value X is the last digit of your student number. If your student number ends in 0 use $X=10$.

4) Find $V x$. Note that $x y$ are the last two digits of your student number.

5) Find $V x$ as a function of time. Note at time $t=0$ s the switch is closed. Note that y is the last digit of your student number.

6) Analyze the circuit shown below and find the current in the capacitor I_{C}. The value X is the last digit of your student number. If your student number ends in 0 use $X=10$. Note that the current source is sinusoidally varying. Note impedances are labeled on the diagram.

7) If the current $i(t)=1.5 t$ A flows through a $(y+1) H$ inductor, find the energy stored at $t=$ 4 s . Note that y is the last digit of your student number.
