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Power Analysis 

Instantaneous Power:  

 

We learned previously:  

𝑝(𝑡) = 𝑣(𝑡) ∙ 𝑖(𝑡) 

And for sinusoidal steady state  

𝑣(𝑡) = 𝑉𝑀 cos(𝜔𝑡 + 𝜃𝑣) 

𝑖(𝑡) = 𝐼𝑀 cos(𝜔𝑡 + 𝜃𝑖) 

So 

𝑝(𝑡) = 𝑉𝑀𝐼𝑀 cos(𝜔𝑡 + 𝜃𝑣) cos(𝜔𝑡 + 𝜃𝑖) 

And we can use  

cos(𝜙1) cos(𝜙2) =
1

2
(cos(𝜙1 − 𝜙2) + cos(𝜙1 + 𝜙2)) 

To write  

𝑝(𝑡) =
𝑉𝑀𝐼𝑀

2
[cos(𝜃𝑣 − 𝜃𝑖) + cos(2𝜔𝑡 + 𝜃𝑣 + 𝜃𝑖)] 

The first term is a constant and the second term is time varying.   

 

Average Power:  

 

We also found:  

𝑃 =
1

𝑇
∫ 𝑝(𝑡)𝑑𝑡

𝑡0+𝑇

𝑡0

 

Or for our sinusoid:  

𝑃 =
1

𝑇
∫ 𝑉𝑀𝐼𝑀 cos(𝜔𝑡 + 𝜃𝑣) cos(𝜔𝑡 + 𝜃𝑖) 𝑑𝑡

𝑡0+𝑇

𝑡0

 

+-V(t)

i(t)

Z
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t0 is an arbitrary time.  

𝑇 =
2𝜋

𝜔
 is the period of voltage or current (and we may average over any number of periods) using the 

cos product formula above: 

𝑃 =
1

𝑇
∫

𝑉𝑀𝐼𝑀

2
[cos(𝜃𝑣 − 𝜃𝑖) + cos(2𝜔𝑡 + 𝜃𝑣 + 𝜃𝑖)]𝑑𝑡

𝑡0+𝑇

𝑡0

 

Second term averages to zero so 

𝑃 =
𝑉𝑀𝐼𝑀

2
cos(𝜃𝑣 − 𝜃𝑖) 

note cos(𝜃) = cos(−𝜃) 

for a resistive circuit 𝜃𝑣 = 𝜃𝑖  

𝑃 =
𝑉𝑀𝐼𝑀

2
 

For a reactive circuit 

𝑃 =
𝑉𝑀𝐼𝑀

2
cos(±90°) = 0 

*Note a purely reactive circuit does not consume any power!!!! 

Example:  Find the power supplied and absorbed 

 

Ohm’s Law: 

𝐼1 =
12∠45˚

4
= 3∠45˚𝐴 

𝐼2 =
12∠45˚

2 − 𝑗
=

12∠45˚

2.24∠ − 26.6˚
= 5.36∠71.6˚𝐴 

So the total source current is:  

𝐼1 + 𝐼2 = 3∠45˚ + 5.36∠71.6˚ 

= 2.12 + 2.12𝑗 + 1.69 + 5.08𝑗 = 3.81 + 7.2𝑗 = 8.15∠62.1˚ 

I2I1

12∠45˚
4W

2W

-jW

I
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With all currents we can find the power to each element.   

Total: 

𝑃 =
𝑉𝑀𝐼𝑀

2
cos(𝜃𝑣 − 𝜃𝑖) 

=
12 ∙ 8.15

2
cos(45 − 62.1) 

= 46.7𝑊 

For the 4ohm resistor:  

𝑃4 =
𝑉𝑀𝐼𝑀

2
=

12 ∙ 3

2
= 18𝑊 

For the 2 ohm resistor we didn’t find a value for the voltage so:  

𝑃4 =
𝐼𝑀

2𝑅

2
=

5.342 ∙ 2

2
= 28.7𝑊 

So the total P=P2+P4 = 18+28.7=46.7W which agrees with the first result.   

Note if you have more than one source current or voltage can be found by superposition, power cannot.   

 

𝐼𝑇 = 𝐼1 + 𝐼2 

𝑃𝑇 = (𝐼1 + 𝐼2)2𝑅 ≠ 𝐼1
2𝑅 + 𝐼2

2𝑅 

Maximum Average Power Transfer 

Recall the thevenin circuit helped us find a condition for maximum power transfer to a resistive load.   

For a sinusoidal source driving a complex load: 

𝑃𝐿 =
𝑉𝐿𝐼𝐿

2
cos(𝜃𝑣 − 𝜃𝑖) 

 

𝐼𝐿 =
𝑉𝑂𝐶

𝑍𝑇𝐻 + 𝑍𝐿
 

𝑉𝐿 =
𝑉𝑂𝐶𝑍𝐿

𝑍𝑇𝐻 + 𝑍𝐿
 

+-VOC
ZL

Zth IL

VL
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Where 𝑍𝑇𝐻 = 𝑅𝑇𝐻 + 𝑗𝑋𝑇𝐻, and 𝑍𝐿 = 𝑅𝐿 + 𝑗𝑋𝐿  

So magnitude 

𝐼𝑀 =
𝑉𝑂𝐶

√(𝑅𝑇𝐻 + 𝑅𝐿)2 + (𝑋𝑇𝐻 + 𝑋𝐿)2
 

𝑉𝑀 =
𝑉𝑂𝐶√𝑅𝐿

2 + 𝑋𝐿
2

√(𝑅𝑇𝐻 + 𝑅𝐿)2 + (𝑋𝑇𝐻 + 𝑋𝐿)2
 

And cos(𝜃𝑣 − 𝜃𝑖) = cos(𝜃𝑍𝐿
) =

𝑅𝐿

√𝑅𝐿
2+𝑋𝐿

2
 

So  

𝑃𝐿 =
1

2
∙

𝑉𝑂𝐶
2𝑅𝐿

(𝑅𝑇𝐻 + 𝑅𝐿)2 + (𝑋𝑇𝐻 + 𝑋𝐿)2
 

But the reactance doesn’t absorb power, and any non zero value 𝑋𝑇𝐻 + 𝑋𝐿reduces PL.  Therefore  

𝑋𝑇𝐻 = −𝑋𝐿 is the optimum.  Then: 

𝑃𝐿 =
1

2
∙

𝑉𝑂𝐶
2𝑅𝐿

(𝑅𝑇𝐻 + 𝑅𝐿)2 + (0)2
 

And we have solved this problem for the resistive case.    

So we want  𝑅𝑇𝐻 = 𝑅𝐿  and 𝑋𝑇𝐻 = −𝑋𝐿 or 

𝑍𝐿 = 𝑅𝐿 + 𝑗𝑋𝐿 = 𝑅𝑇𝐻 − 𝑗𝑋𝑇𝐻 = 𝑍𝑇𝐻
∗ 

The complex conjugate.   

Note if XL = 0 then the value RL can be found from 
𝑑𝑃𝐿

𝑑𝑅𝐿
= 0 

𝑅𝐿 = √𝑅𝑇𝐻
2 + 𝑋𝑇𝐻

2 

Example:  Find ZL for maximum average power transfer in the following circuit: 

 

We can find a Thevenin equivalent impedance: 

2W

1jW

4∠0˚ 𝐴 4W ZL
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𝑍𝑇𝐻 = (2 + 𝑗)//4 

𝑍𝑇𝐻 =
4(2 + 𝑗)

4 + 2 + 𝑗
=

4(2 + 𝑗)

6 + 𝑗
= 4 ∙

2.24∠26.6°

6.08∠9.46°
= 1.47∠17.14° = 1.41 + 0.43𝑗 

So we would like:  

𝑍𝐿 = 1.41 − 0.43𝑗 = 𝑍𝑇𝐻
∗ 

And we could find the power delivered using a current divider from  

𝑉𝑂𝐶 = 4 ∙
2 ∙ 4∠0°

6 + 𝑗
= 5.26∠ − 9.46° 

And  

𝐼 =
𝑉𝑂𝐶

2.82
= 1.87∠ − 9.46° 

Note: 𝑍𝐿 + 𝑍𝑇𝐻 = 2.82 

So 

𝑃𝐿 =
1

2
∙ 𝐼𝑀

2𝑅𝐿 =
1

2
(1.87)2 ∙ 1.41 = 2.47𝑊 

 

Effective or RMS Values 

Recall early in the course we evaluated RMS average values of periodic signals.  

Now we will examine how RMS values relate to the ‘effectiveness’ of signals at delivering power.  

We can define an effective value of a periodic current as the constant DC value that would deliver the 

same average power to a resistor.   

So an effective value Ieff would deliver power:  

𝑃 = 𝐼𝑒𝑓𝑓
2𝑅 

And a periodic current would deliver an average  

𝑃 =
1

𝑇
∫ 𝑖2(𝑡)𝑅𝑑𝑡

𝑡0+𝑇

𝑡0

 

2W

1jW

4W ZTH
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Equating the two:  

𝐼𝑒𝑓𝑓
2 =

1

𝑇
∫ 𝑖2(𝑡)𝑑𝑡

𝑡0+𝑇

𝑡0

 

Or 

𝐼𝑒𝑓𝑓 = √
1

𝑇
∫ 𝑖2(𝑡)𝑑𝑡

𝑡0+𝑇

𝑡0

 

Which is the square root of the mean of the current squared or RMS value 𝐼𝑒𝑓𝑓 = 𝐼𝑅𝑀𝑆 

The most common signals we are interested in is the sinusoid.  (Note for DC IRMS = I) 

For 

𝑖(𝑡) = 𝐼𝑀 cos(𝜔𝑡 − 𝜃) 

𝐼𝑅𝑀𝑆 = √
1

𝑇
∫ 𝐼𝑀

2 cos2(𝜔𝑡 − 𝜃) 𝑑𝑡
𝑇

0

 

Note that: 

cos2(𝜙) =
1

2
(1 + cos 2𝜙) 

𝐼𝑅𝑀𝑆 = 𝐼𝑀
√ 𝜔

2𝜋
∫

1

2
(1 + cos(2𝜔𝑡 − 2𝜃))𝑑𝑡

2𝜋
𝜔

0

 

Since the cosine averages to zero we are left with: 

𝐼𝑅𝑀𝑆 = 𝐼𝑀
√ 𝜔

2𝜋
∫

1

2
𝑑𝑡

2𝜋
𝜔

0

 

So 

𝐼𝑅𝑀𝑆 = 𝐼𝑀√
𝜔

2𝜋

1

2
(

2𝜋

𝜔
− 0) =

𝐼𝑀

√2
 

So a sinusoid with peak current of IM delivers the same average power as a DC current 
𝐼𝑀

√2
 

Similarly, for a sinusoid 𝑉𝑅𝑀𝑆 =
𝑉𝑀

√2
 

Recall average power 

𝑃 =
𝑉𝑀𝐼𝑀

2
cos(𝜃𝑣 − 𝜃𝑖) 
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=
√2𝑉𝑅𝑀𝑆√2𝐼𝑅𝑀𝑆

2
cos(𝜃𝑣 − 𝜃𝑖) 

𝑃 = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 cos(𝜃𝑣 − 𝜃𝑖) 

What is the peak voltage at a wall outlet? 

𝑉𝑙𝑖𝑛𝑒 = 120𝑉𝑅𝑀𝑆 = 120√2 = 170𝑉 

𝜔𝑙𝑖𝑛𝑒 = 60𝐻𝑧 ∙ 2𝜋 = 377𝑟𝑎𝑑/𝑠 

𝑣(𝑡) = 120√2cos (377𝑡) 

When RMS values are used, it should be indicated in units! 

 

Power Factor 

Notice that average power from a sinusoid 𝑃 = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 cos(𝜃𝑣 − 𝜃𝑖)depends on the phase factor 

cos(𝜃𝑣 − 𝜃𝑖) which can vary from 0 (reactance) to 1 (resistance).  The dimensionless factor cos(𝜃𝑣 − 𝜃𝑖) 

is referred to as power factor and can be defined as the ratio of average power to apparent power.  If 

we neglected phase information (for example by measuring I and V with a multimeter) we would 

say 𝑃 = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆  which is the apparent power in the system.  Therefore power factor is:  

𝑃𝐹 =
𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 cos(𝜃𝑣 − 𝜃𝑖)

𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆
= cos(𝜃𝑣 − 𝜃𝑖) 

Also notice that from Ohm’s law V = IZ so 𝜃𝑣 − 𝜃𝑖 = 𝜃𝑍 the impedance phase angle so 

𝑃𝐹 = cos(𝜃𝑍𝐿
) = cos(−𝜃𝑍𝐿

) 

Since the cosine includes the sign of the angle, P.F. is said to be leading or lagging to phase of current 

w.r.t. voltage.   

For an RC load 𝑍𝐿 = 𝑅 −
𝑗

𝜔𝐶
 and 𝜃𝑍𝐿

< 0 

Since V = ZI current will lead voltage.   

RC loads have a leading P.F. 

For an RL load load 𝑍𝐿 = 𝑅 + 𝑗𝜔𝐿 and 𝜃𝑍𝐿
> 0 

Since V = ZI current will lag voltage.   

RL loads have a lagging P.F. 

 

P.F. has important economic impact on power systems.  Although apparent power may not be 

dissipated, it does need to be generated and transmitted.  At the load it may be absorbed by a resistive 

load, or simply stored in a reactive load, however there are transmission losses in both cases.  P.F. close 

to 1 is optimal.   
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Example 

A load consumes 88kW at P.F. 0.707 lagging from a 480VRMS line.  

Transmission line resistance is 0.08W  

How much power must be supplied? 

𝑃 = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆𝑃𝐹 

So 𝐼𝑅𝑀𝑆 =
88𝑘𝑊

480(0.707)
= 259.3𝐴 

Power supplied 𝑃𝑆 = 𝑃𝐿 + 𝐼𝑅𝑀𝑆
2𝑅 = 88𝑘𝑊 + 0.08(259.3)2 = 93.38𝑘𝑊 

But if P.F. is raised to 0.9 

𝐼𝑅𝑀𝑆 =
88𝑘𝑊

480(0.90)
= 203.7𝐴 

𝑃𝑆 = 88𝑘𝑊 + 0.08(203.7)2 = 91.32𝑘𝑊 

And line losses are reduced from 5.38kW to 3.32kW.   

Note it is often worthwhile to correct power factor (adjust closer to 1) by adding reactance to the load.  

In microwave engineering we call this impedance matching.  

Also, large loads often operate at higher voltage to reduce I2R losses. 

 

Complex Power 

We found real average power from a sinusoidal signal   

𝑃 =
𝑉𝑀𝐼𝑀

2
cos(𝜃𝑣 − 𝜃𝑖) = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 cos(𝜃𝑣 − 𝜃𝑖) 

If we represent v(t) and i(t) as phasers, then VI will give us a complex quantity.  

To get agreement with average power, we find we need to use 

𝑆 = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆
∗ 

Where 𝐼𝑅𝑀𝑆
∗ is the complex conjugate of IRMS.  Then, 

𝑆 = 𝑉𝑅𝑀𝑆∠𝜃𝑣𝐼𝑅𝑀𝑆∠−𝜃𝑖 

= 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆∠𝜃𝑣−𝜃𝑖 

And we can write this in rectangular coordinates as  

𝑆 = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆(cos(𝜃𝑣 − 𝜃𝑖) + 𝑗 sin(𝜃𝑣 − 𝜃𝑖)) 

S is called complex power and of course 

𝑆 = 𝑃 + 𝑗𝑄 
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We have seen the real term before, it is our real or average power 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 cos(𝜃𝑣 − 𝜃𝑖) the imaginary 

term 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 sin(𝜃𝑣 − 𝜃𝑖)  is the reactive power, and the magnitude |𝑆| = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 is what we 

previously called apparent power.   

To keep these different powers distinct 

𝑃 → [𝑊] 

𝑆 → [𝑉𝐴] 

𝑄 → [𝑉𝐴𝑅] 

VAR = volt amp reactive.   

Inductor (𝜃𝑣 − 𝜃𝑖) = 90°     𝑄 > 0 

Capacitor (𝜃𝑣 − 𝜃𝑖) = −90°     𝑄 < 0 

With one calculation we can find real power P dissipated by resistive elements and reactive power Q 

storing energy in L and C.   

Say we have an industrial load with a lagging power factor (current lags voltage (𝜃𝑣 − 𝜃𝑖) = 𝜃𝑍𝐿
> 0) 

 

Reduce (𝜃𝑣 − 𝜃𝑖) and 𝑆𝐿 → 𝑃𝐿       P.F. ->1  

To do this, add negative Q -> capacitive load.   

 

 

Example 

A 230VRMS 3𝜙 system supplies 2000W to a delta connected balanced load, P.F. 0.9 lagging.  Find line 

current, phase current 

𝜃𝑣 − 𝜃𝑖

𝑃𝐿

𝑄𝐿

𝑆𝐿

Source Load
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Power 𝑃 = 3𝑃𝜙 

= 3 ∙ 𝑉 ∙ 𝐼 ∙ 𝑃𝐹  

= 3 ∙ 𝑉𝐿 ∙
𝐼𝐿

√3
∙ 𝑃𝐹  

So    2000𝑊 = 𝐼𝐿 ∙ √3 ∙ 230 ∙ 0.9  

 𝐼𝐿 = 5.58𝐴𝑟𝑚𝑠   so    𝐼𝜙 =
𝐼𝐿

√3
= 3.22𝐴𝑟𝑚𝑠 

Then 𝑍 =
𝑉

𝐼
=

|𝑉|

|𝐼|
∠(𝜃𝑣 − 𝜃𝑖) =

230

3.22
∠ cos−1 0.9 = 71.4∠25.8Ω 

 

Mutual Inductance 

You will find electrical circuits, magnetic fields, and electromagnetic phenomena are closely linked, and 

we will develop theory, techniques in ELEC 3105 and 3909.   

Amperes Law  ---   flow of current creates a magnetic field.  

Fareday’s Law ---  time varying magnetic field ‘induces’ a voltage in a conductor.  

Z

Z

Z230V

230V

IL

𝐼𝑃 =
𝐼𝐿

3
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In a coil (inductor) the effect is significant as each loop is magnetically coupled.   

In a coil with N turns carrying a current i, there is a ‘flux linkage’ 𝜆 = 𝑁𝜙  where 𝜙 is magnetic flux.   

Also 𝜆 = 𝐿𝑖 ,   so   𝜙 =
𝐿

𝑁
∙ 𝑖   

Faraday’s law says voltage 𝑣 =
𝑑𝜆

𝑑𝑡
   or 

𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑖

𝑑𝐿

𝑑𝑡
 

Note that usually L is constant and the second term is zero so 𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
 which is our familiar expression.  

Now if we have a second coil and bring it close enough to the first we can create flux linkage from coil 1 

to 2.  So if coil 1 has flux linkage 

𝜆1 = 𝑁1𝜙 = 𝐿1𝑖1 

And we can couple all the flux to coil 2 with N2 turns, 

𝜆2 = 𝑁2𝜙 = 𝑁2

𝐿1𝑖1

𝑁1
 

And induced voltage 

𝑣2 =
𝑑

𝑑𝑡
(

𝑁2

𝑁1
𝐿1𝑖1) =

𝑁2

𝑁1
𝐿1

𝑑𝑖1

𝑑𝑡
= 𝐿21

𝑑𝑖1

𝑑𝑡
 

And current in coil 1 creates voltage in coil 2.    

L21 = mutual inductance.  

➔  Magnetically coupled coils.  

We could have a current in both coils, so  

I1

I2

Flux Lines

V2

V1
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𝜆1 = 𝐿1𝑖1 + 𝐿12𝑖2 

𝜆1 = 𝐿21𝑖1 + 𝐿2𝑖2 

So 

𝑣1 = 𝐿1

𝑑𝑖1

𝑑𝑡
+ 𝐿12

𝑑𝑖2

𝑑𝑡
 

𝑣2 = 𝐿21

𝑑𝑖1

𝑑𝑡
+ 𝐿2

𝑑𝑖2

𝑑𝑡
 

And for linear circuit L12 = L21 = M.  

Note signs depend on current directions.  

Dots are used ---  both currents into dots -> signs positive 

                          ---- one current in, one out -  M-terms negative 

Or current into dot produces voltage in coupled coil positive at dot.  

You can do lots of analysis on different coupled circuits, but the most common application is the 

transformer.    

Faraday          𝑣 =
𝑑𝜆

𝑑𝑡
     so 

𝑣1 = 𝑁1

𝑑𝜙

𝑑𝑡
 

𝑣2 = 𝑁2

𝑑𝜙

𝑑𝑡
 

And if the same flux is through both coils then 

𝑣1

𝑣2
=

𝑁1

𝑁2
 

And if power is conserved: 

𝑣1𝑖1 = 𝑣2𝑖2 

Or  

𝑖1

𝑖2
=

𝑣2

𝑣1
=

𝑁2

𝑁1
 

(which can also be found from magnetic field arguments) 

So the voltage change is proportional to the number of turns (higher N, higher V) and the current is 

inversely proportional (higher N, lower i).   

So we can transform voltage, current, and voltage/current = impedance.   

Note here we have assumed no winding or core loss, an ideal case.  
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Example 

You would like 18VRMS at 650mA from a 120VRMS line voltage.   You have a transformer with 1000 turn 

primary (input).  How many turns are required in the secondary(output)?  What is the primary current? 

𝑣𝑝

𝑣𝑠
=

𝑁𝑝

𝑁𝑠
 

𝑁𝑠 =
𝑁𝑝𝑣𝑠

𝑣𝑝
=

1000 ∙ 18√2

120√2
= 150𝑡𝑢𝑟𝑛𝑠 

(peak or rms values can be used).  

And  

𝑖𝑃𝑁𝑝 = 𝑖𝑠𝑁𝑠 

So 

𝑖𝑃 =
650𝑚𝐴 ∙ 150

1000
= 97.5𝑚𝐴 

Notice 

𝑣𝑠 =
𝑁𝑠𝑣𝑝

𝑁𝑝
 

𝑖𝑠 =
𝑁𝑝𝑖𝑝

𝑁𝑠
 

𝑣𝑝 =
𝑁𝑝𝑣𝑠

𝑁𝑠
 

𝑖𝑝 =
𝑁𝑠𝑖𝑠

𝑁𝑝
 

Therefore: 

𝑣𝑝

𝑖𝑝
= 𝑍𝑝 =

𝑁𝑝𝑣𝑠

𝑁𝑠

𝑁𝑠𝑖𝑠
𝑁𝑝

= (
𝑁𝑝

𝑁𝑠
)

2 𝑣𝑠

𝑖𝑠
 

𝑍𝑝 = (
𝑁𝑝

𝑁𝑠
)

2

𝑍𝑠  

We can transform impedance as well! 

Example:  Find the current drawn from the source.  



132 
 

 

We first transform the impedance on the secondary to its equivalent resistance on the primary: 

 

Now we find current in the usual way: 

𝑖𝑝 =
30√2∠0°

20 + 20𝑗 + 8 − 40𝑗
= 0.872√2∠35.5°𝐴 

Laplace Transforms 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0

 

Where s is complex frequency 𝑠 = 𝜎 + 𝑗𝜔 

This goes from time domain -> complex frequency domain.  Also the inverse: 

ℒ−1{𝐹(𝑠)} = 𝑓(𝑡) =
1

2𝜋𝑗
∫ 𝐹(𝑠)𝑒𝑠𝑡𝑑𝑠

𝜎1+𝑗∞

𝜎1−𝑗∞

 

Allows us to return to the time domain.   

So this is very like our phasor analysis (D.E. -> algebraic) (used for cosine functions only) but is more 

general and captures sinusoidal S.S. (𝑠 = 𝑗𝜔) and transient (𝑠 = 𝜎) response and all combinations.   

Hence you will find many transfer functions written in terms of s (s-domain complex freq domain).   

You can solve many circuit problems without using the transform, so the mechanics and application can 

wait until you get more background in mathematics.   

Fourier Analysis 

Techniques apply to a wide range of engineering problems (heat flow, vibrations, circuits).   

20W

30𝑉𝑅𝑀 𝑆

20jW

2W

-10jW

2:1

20W

30𝑉𝑅𝑀 𝑆

20jW

22X2W

22X(-10jW)
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Any periodic function can be expressed as a sum of linearly independent functions such as sinusoidal 

functions.    

𝑓(𝑡) = 𝑎𝑜 + ∑ 𝐷𝑛 cos(𝑛𝜔𝑜𝑡 + 𝜃𝑛)

∞

𝑛=1

 

i.e. a fundamental term (n=1) and all harmonics (multiples of 𝜔𝑜) 

and from Eulers identity 

𝑓(𝑡) = ∑ 𝐶𝑛𝑒𝑗𝑛𝜔𝑜𝑡

∞

𝑛=−∞

 

(an exponential Fourier series) 

Pick one of the terms  𝑒−𝑗𝑘𝜔𝑜𝑡, multiply and integrate over a period To: 

∫ 𝑓(𝑡)𝑒−𝑗𝑘𝜔𝑜𝑡𝑑𝑡

𝑡1+𝑇𝑜

𝑡1

= ∫ ( ∑ 𝐶𝑛𝑒𝑗𝑛𝜔𝑜𝑡

∞

𝑛=−∞

) 𝑒−𝑗𝑘𝜔𝑜𝑡𝑑𝑡

𝑡1+𝑇𝑜

𝑡1

 

We have a bunch of terms 𝑒𝑗(𝑛−𝑘)𝜔𝑜𝑡 which average to zero, unless n=k.   

= 𝐶𝑘𝑇𝑜 

So  

𝐶𝑘 =
1

𝑇𝑜
∫ 𝑓(𝑡)𝑒−𝑗𝑘𝜔𝑜𝑡𝑑𝑡

𝑡1+𝑇𝑜

𝑡1

 

And given the function f(t) we can find coeff in the series.  

So any periodic signal will have a frequency spectrum made up of the coefficients Cn (fundamental and 

harmonics).   

And the response of a circuit to a periodic function is the superposition of the responses from each 

sinusoidal term:  

𝑣(𝑡) = 𝑣0 + 𝑣1(𝑡) + 𝑣2(𝑡) + ⋯ 

In fact, if the harmonic functions became close enough to each other (a continuous frequency spectrum) 

it can be shown that a periodic signal can also be represented   

➔  Fourier Transform 

Similar to Laplace, and again will probably be easier to use with more math background.  


