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Poles and Zeroes 

You may have noticed that our impedances take the form of a ratio of polynomials in j (or s) 

𝑍(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=
𝑎𝑛𝑠

𝑛 + 𝑎𝑛−1𝑠
𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0

𝑏𝑛𝑠
𝑛 + 𝑏𝑛−1𝑠

𝑛−1 +⋯+ 𝑏1𝑠 + 𝑏0
 

Although we have primarily seen 1st order functions (a1, a0, b1, b0).   

This is also true for voltages and currents, admittances and gains.   

In fact, there are 4 ‘gains’ we may be interested in, depending on input and output variables  

Input Output Transfer Function  

Voltage Voltage Voltage Gain 𝐺𝑣(𝑠) 

Voltage Current Trans Admittance 𝑌(𝑠) 
Current Current Current Gain 𝐺𝑖(𝑠) 

Current Voltage Trans Impedance 𝑍(𝑠) 

 

Simple Poles and Zeroes 

A simple pole or zero has the form (1 + 𝑗𝜔𝜏) 

Either a zero 1 + 𝑗𝜔𝜏 →    0𝑑𝐵   𝜔𝜏 ≪ 1   𝜙 = 0  

                                         →  +
20𝑑𝐵

𝑑𝑒𝑐
  𝜔𝜏 ≫ 1   𝜙 = 90  

Break at 𝜏 =
1

𝜔
 

Or a pole  
1

1+𝑗𝜔𝜏
 →    0𝑑𝐵   𝜔𝜏 ≪ 1   𝜙 = 0  

                               →  −
20𝑑𝐵

𝑑𝑒𝑐
  𝜔𝜏 ≫ 1   𝜙 = −90  

Break at 𝜏 =
1

𝜔
 

You may also have (1 + 𝑗𝜔𝜏)𝑁which has slope and phase multiplied by N.  

Quadratic Pole or Zero 

Has the form 1 + 2𝜁(𝑗𝜔𝜏) + (𝑗𝜔𝜏)2 where 𝜁 is the damping ratio.   

This could be a RLC or resonant network.   

If 𝜁 ≥ 1 roots are real and this is the product of two simple pole/zero terms.   

If  𝜁 < 1 roots are complex conjugates.   

For 𝜔𝜏 ≪ 1    magnitude -> 0dB  𝜔𝜏 ≫ 1    magnitude |(𝜔𝜏)2| → 40𝑑𝐵/𝑑𝑒𝑐  +for zeros and – for poles.  

In between the limits, behavior depends on 𝜁 
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Phase shift is tan−1
2𝜁𝜔𝜏

1−(𝜔𝜏2)
 and goes from 0° → ±180° (positive for a zero and negative for a pole) 

 

If you can factor a transfer function and recognize these terms, you can quickly plot the frequency 

dependent behavior without extensive calculation.  

Example: Plot the following transfer function:  

𝐺(𝑗𝜔) =
(1 + 𝑗

𝜔
5
) (1 + 𝑗

𝜔
50
)

𝑗𝜔 (1 + 𝑗
𝜔
20) (1 + 𝑗

𝜔
100)

 

We note there are three poles at 𝜔 = 0, 20, 100 

And two zeros at 𝜔 = 5,50 

Below the pole/zero frequency the pole/zero has a magnitude of 1.  

Above the pole/zero frequency a pole has a magnitude of 1/𝜔  and a zero has a magnitude of 𝜔. 

Knowing this we can sketch:  

 

Example: 

Plot the magnitude and phase as a function of frequency for: 

𝐺𝑉(𝑗𝜔) =
10(1 + 0.1𝑗𝜔)

(1 + 𝑗𝜔)(1 + 0.02𝑗𝜔)
 

Plot individual asymptotic plots for each term and add them since log(ab) = log(a)+log(b) 

|G|

    (𝜔)
0dB

    (𝜔)

𝜙

0

-180

𝜁=0.1

𝜁=1
𝜁=0.1

𝜁=1

|G|

    (𝜔)
0dB

5 20 50 100
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Term 1:   20    (10) = 20𝑑𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Term 2:  20    |1 +0.1𝑗𝜔| = 0𝑑𝐵  0.1𝜔 ≪ 1 

                                                  = +
20𝑑𝐵

𝑑𝑒𝑐
 0.1𝜔 ≫ 1 

 𝜔𝑐   @   0.1𝜔 = 1     𝑜𝑟 𝜔𝑐 =
10𝑟𝑎𝑑

𝑠
  

 

Term 3:  −20    |1 + 𝑗𝜔| = 0𝑑𝐵    𝜔 ≪ 1 

                                                  = −
20𝑑𝐵

𝑑𝑒𝑐
 𝜔 ≫ 1 

  𝜔𝑐 =
1𝑟𝑎𝑑

𝑠
  

 

Similarly Term 4 gives: 

    (𝜔)

20dB

    (𝜔)
0dB

10 a / 

    (𝜔)
0dB

1 a / 
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Composite magnitude is found by adding terms.  E.g. at 1rad/s      20dB+0dB+0dB+0dB=20dB and 

magnitude begins changing at -20dB/decade.   

At 10rad/s      20dB+0dB-20dB/dec +0dB = 0dB  

And magnitude begins changing at -20dB/dec+20dB/dec = 0dB/dec.   

At 50rad/s we are still at 0dB, but the magnitude begins changing at -20+20-20=-20dB/dec.   

 

We can go through a similar process for phase  

𝐾0 = 10 →   𝜙 = 0°   constant  

(1 + 0.1𝑗𝜔) →   𝜙 = 0°       𝜔 ≪ 10      𝜙 = 90°       𝜔 ≫ 10           

1

1+𝑗𝜔
→   𝜙 = 0°       𝜔 ≪ 1      𝜙 = −90°       𝜔 ≫ 1           

1

1+0.02𝑗𝜔
→   𝜙 = 0°       𝜔 ≪ 50      𝜙 = −90°       𝜔 ≫ 50  

Summing these starts at 0°, begins dropping at 𝜔 = 1𝑟𝑎𝑑/𝑠, levels at 𝜔 = 10𝑟𝑎𝑑/𝑠and resumes its 

decrease to −90° at 𝜔 = 50𝑟𝑎𝑑/𝑠.  

    (𝜔)
0dB

50 a / 

    (𝜔)
0dB

1 10 50

20dB
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Resonant Circuits 

Series Resonance:  

 

𝑍(𝑗𝜔) = 𝑅 + 𝑗𝜔𝐿 +
1

𝑗𝜔𝐶
 

= 𝑅 + 𝑗 (𝜔𝐿 −
1

𝜔𝐶
) 

The imaginary term =0 if 

𝜔𝐿 =
1

𝜔𝐶
  or 𝜔𝑜 =

1

√𝐿𝐶
   and 𝑍(𝑗𝜔) = 𝑅 

𝜔𝑜 =resonant frequency.  

Resonance is an important effect, sometimes avoided (e.g. vibrations) or exploited (tuned devices).  

At resonance V and I are in phase.  

Impedance is minimum, current is maximum.   

At low frequencies, Capacitance dominates 

At high frequencies, inductance dominates.  

Quality factor:  𝑄 = 
𝜔𝑜𝐿

𝑅
=

1

𝜔𝑜𝐶𝑅
=

1

𝑅
√
𝐿

𝐶
 

Q is an important characteristic of a resonant circuit   -> low R = high Q 

    (𝜔)

-45

𝜙

0

-90

1 10 50

R

L

C
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Example 

Design a RLC network with resonance at 1000Hz using a 0.02H inductor with Q =200.   

 

The required capacitor is:  

𝜔𝑜 =
1

√𝐿𝐶
= 2π𝑓𝑜 

Or 

𝐶 =
1

0.02𝐻 ∙ (2π ∙ 1000)2
= 1.27𝜇𝐹 

And from the inductor:  𝑄 = 
𝜔𝑜𝐿

𝑅
= 200 

𝑅 = 
2π ∙ 1000 ∙ 0.02

200
= 0.628Ω 

Then I = Vs/R=15.9A at resonance.   

And the capacitor voltage would be 

𝑉𝑐 = 𝐼 ∙ (
1

𝑗𝜔𝐶
) = 15.9 ∙ (

125

𝑗
) ≅ 200𝑉! 

So be careful of the voltage rating as there is lots of stored energy at resonance!  

 

Impedance and Admittance of the resonant circuit is written in various forms.  One convenient form is in 

terms of 𝜔𝑜, 𝜔, 𝑎𝑛𝑑 𝑄.  

𝑌(𝑗𝜔) =
1

𝑍(𝑗𝜔)
=

1

𝑅 + 𝑗 (𝜔𝐿 −
1
𝜔𝐶)

 

=
1

𝑅 (1 + 𝑗 (
𝜔𝐿
𝑅 −

1
𝜔𝑅𝐶))

 

and 𝑄 = 
𝜔𝑜𝐿

𝑅
  or    

𝐿

𝑅
= 

𝑄

𝜔𝑜
 

+-

R

Vc

L

𝑉𝑠 = 10 0  𝑉

inductor
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also 𝑄 = 
1

𝜔𝑜𝐶𝑅
    or   

1

𝑅𝐶
=  𝑄𝜔𝑜 

then  

𝑌(𝑗𝜔) =
1

𝑅 + 𝑗 (𝑄
𝜔
𝜔𝑜

− 𝑄
𝜔𝑜
𝜔
)

 

And since 

𝐼 =
𝑉𝑠
𝑍
= 𝑌 ∙ 𝑉𝑠 

Where Vs is the source phasor and VR = IR.   

Then 

𝑉𝑅
𝑉𝑆
=
𝐼 ∙ 𝑅

𝑉𝑆
= 𝑌 ∙ 𝑅 

Or 

𝐺𝑉 =
1

1 + 𝑗𝑄 (
𝜔
𝜔𝑜

−
𝜔𝑜
𝜔
)

 

Which has a magnitude of 

𝑀(𝜔) =
1

√1 + 𝑄2 (
𝜔
𝜔𝑜

−
𝜔𝑜
𝜔 )

2
 

And phase 

𝜙(𝜔) = − tan−1𝑄 (
𝜔

𝜔𝑜
−
𝜔𝑜
𝜔
) 

To sketch these consider 

𝜔 = 𝜔𝑜       𝑀(𝜔) = 1  (0𝑑𝐵) 

Half power frequencies give circuit bandwidth 

1

1 + 𝑄2 (
𝜔
𝜔𝑜

−
𝜔𝑜
𝜔 )

2 =
1

2
 

Or  

𝑄 (
𝜔

𝜔𝑜
−
𝜔𝑜
𝜔
) = ±1 

And using the quadratic formula (after some rearrangement) 



111 
 

𝜔𝐿𝑂 = 𝜔𝑜 [
−1

2𝑄
+ √(

1

2𝑄
)
2

+ 1] 

𝜔𝐻𝐼 = 𝜔𝑜 [
1

2𝑄
+√(

1

2𝑄
)
2

+ 1] 

(note that negative frequencies are rejected).  Which gives a difference  

𝐵𝑊 = 𝜔𝐻𝐼 −𝜔𝐿𝑂 = 2 ∙
𝜔𝑜
2𝑄

=
𝜔𝑜
𝑄

 

And you can also show  

𝜔𝐻𝐼 ∙ 𝜔𝐿𝑂 = 𝜔𝑜
2 

 

So small R = high Q = narrow bandwidth = high selectivity e.g. tuning or filtering.  

Now consider energy storage in the resonant circuit.   

At 𝜔𝑜the circuit impedance is R for source 𝑉𝑚 0° so 

𝑉𝐶 =
1

𝑗𝜔𝑜𝐶
𝐼 =

1

𝑗𝜔𝑜𝐶

𝑉𝑚
𝑅
 0° =

𝑉𝑚
𝜔𝑜𝑅𝐶

 − 90° 

    (𝜔)

1
1

2

𝜔𝑜𝜔𝐿𝑂 𝜔𝐻𝐼

    (𝜔)

90°

45°

−45°

0°

−90°
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And energy stored  

𝜔𝐶(𝑡) =
1

2
𝐶𝑉𝐶

2(𝑡) = 𝐶 ∙
𝑉𝑚

2

2𝜔𝑜
2𝑅2𝐶2

 in2(𝜔𝑜𝑡) 

For the inductor, 

𝐼 =
𝑉𝑚
𝑅
 0° 

So  

𝜔𝐿(𝑡) =
1

2
𝐿𝑖2(𝑡) =

𝐿

2
∙
𝑉𝑚

2

𝑅2
c  2(𝜔𝑜𝑡) 

Since 𝜔𝑜 =
1

√𝐿𝐶
 we can remove C from the capacitor stored energy, so  

𝜔𝐶(𝑡) =
𝑉𝑚

2

2
1
𝐿𝐶 𝑅

2𝐶
 in2(𝜔𝑜𝑡) 

And total energy stored  

𝜔𝑆(𝑡) = 𝜔𝐶(𝑡) + 𝜔𝐿(𝑡) =
𝑉𝑚

2𝐿

2𝑅2
( in2(𝜔𝑜𝑡) + c  2(𝜔𝑜𝑡)) 

=
𝑉𝑚

2𝐿

2𝑅2
 

(Since sin2 + cos2 = 1) is the maximum stored energy.   

In resonance this energy is exchanged between capacitor and inductor (at freq 𝜔𝑜) 

And how much energy is dissipated in a cycle? 

𝜔𝐷 = ∫ 𝑃𝑅𝑑𝑡
𝑇

0

= ∫ (
𝑉𝑚
𝑅
c  (𝜔𝑜𝑡))

2

𝑅𝑑𝑡
𝑇

0

=
𝑉𝑚

2

2𝑅
𝑇 

The ratio of the stored energy to the dissipated energy is: 

𝜔𝑆
𝜔𝐷

=

𝑉𝑚
2𝐿

2𝑅2

𝑉𝑚
2

2𝑅 𝑇

=
𝐿

𝑅𝑇
=

𝐿

𝑅
2𝜋
𝜔𝑜

=
𝜔𝑜
2𝜋

𝐿

𝑅
=
𝑄

2𝜋
 

So 

𝑄 = 2𝜋
𝜔𝑆
𝜔𝐷

 

A definition of Q is used in all resonant phenomena (mechanical, electrical, acoustic, etc.).  
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Example  

 

Find R,L, C to give a BP filter with 𝜔𝑜 = 1000𝑟𝑎𝑑/𝑠 , BW = 100rad/s (usually in Hz) 

𝜔𝑜 =
1

√𝐿𝐶
   so  

1

𝐿𝐶
= 106 

𝐵𝑊 =
𝜔𝑜

𝑄
   or  𝑄 =

1000

100
= 10 

And  

𝑄 = 
𝜔𝑜𝐿

𝑅
  so  10 =  

1000𝐿

𝑅
 

2 equations, 3 unknowns so fix C = 1F, then L = 1H (a bit large) , R=100 

 

We saw in an example that capacitor and inductor voltage in series resonant circuits can be high (Q X 

Vs).   

Does the maximum actually occur at resonance (𝜔𝑜)? 

𝑉𝐶 = (

1

𝑗𝜔𝐶

𝑅+𝑗𝜔𝐿+
1

𝑗𝜔𝐶

)𝑉𝑆                      (voltage division) 

=
𝑉𝑆

1−𝜔2𝐿𝐶+𝑗𝜔𝑅𝐶
  

|𝑉𝐶| =
|𝑉𝑆|

√(1 − 𝜔2𝐿𝐶)2 + (𝜔𝑅𝐶)2
 

Now set 

𝑑|𝑉𝐶|

𝑑𝜔
= 0 =

𝑑

𝑑𝜔
(1 − 2𝜔2𝐿𝐶 + 𝜔2𝑅2𝐶2 +𝜔4𝐿2𝐶2)−1/2 

= −
1

2
((1 − 𝜔2𝐿𝐶)2 + (𝜔𝑅𝐶)2)−3/2 ∙ (−4𝜔𝐿𝐶 + 2𝜔𝑅2𝐶2 + 4𝜔3𝐿2𝐶2) 

(chain rule) 

Or 

2𝐿𝐶 − 𝑅2𝐶2 = 2𝜔2𝐿2𝐶2 

+-Vs R

L C
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𝜔2 =
1

𝐿𝐶
−
1

2

𝑅2

𝐿2
 

𝜔𝑚𝑎𝑥 = √
1

𝐿𝐶
−
1

2

𝑅2

𝐿2
 

𝜔𝑚𝑎𝑥 = √𝜔𝑜
2 −

1

2
(
𝜔𝑜
𝑄
)
2

 

= 𝜔𝑜√1 −
1

2𝑄2
 

So clearly 𝜔𝑚𝑎𝑥 ≠ 𝜔𝑜 but approaches it as Q gets large.  

Now back to the capacitor voltage: 

|𝑉𝐶| =
|𝑉𝑆|

√(1 − 𝜔𝑚𝑎𝑥
2𝐿𝐶)2 + (𝜔𝑚𝑎𝑥𝑅𝐶)

2
 

=
|𝑉𝑆|

√(1 − (𝜔𝑜
2 −

1
2
𝜔𝑜2

𝑄2
) ∙

1
𝜔𝑜2

)
2

+ (𝜔𝑜
2 −

𝜔𝑜2

2𝑄2
)𝑅2𝐶2

 

=
|𝑉𝑆|

√(−
1
2𝑄2

)
2

+
1
𝑄2

(1 −
1
2𝑄2

)

 

=
|𝑉𝑆|

√
1
𝑄2

(
1
4𝑄2

+ (1 −
1
2𝑄2

))

 

=
𝑄|𝑉𝑆|

√1 −
1
4𝑄2

 ~𝑄|𝑉𝑆| 

For large Q.   

 

Parallel Resonance 
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In this case 𝐼𝑠 = 𝑌 ∙ 𝑉𝑠  

𝐼𝑠 = 𝑉𝑠 (𝐺 + 𝑗 (𝜔𝐶 −
1

𝜔𝐿
)) 

And at 𝜔 = 𝜔𝑜  𝐼𝑠 = 𝐺 ∙ 𝑉𝑠 

There are still currents Ic and IL but they are 180° out of phase, and IX -> 0.  

Energy is transferred from inductor to capacitor and back again.   

Admittance is determined by inductance at low frequencies and capacitance at high frequencies.   

𝑄 =
𝑅

𝜔𝑜𝐿
=

1

𝐺𝜔𝑜𝐿
= 𝜔𝑜𝑅𝐶 =

𝜔𝑜𝐶

𝐺
 

Which you can derive from 𝑄 =
𝜔𝑆

𝜔𝐷
 but is analogous to the series case 

𝐿

𝑅
→ 𝑅𝐶 or 𝑄𝑆 →

1

𝑄𝑃
 

Currents mimic voltage in series case. e.g.  

|𝐼𝑐| = 𝑄|𝐼𝑠| 

Notice that Vo/Vs =1 always in this case and we would be more interested in say Vo/Is a transimpedance 

characteristic.   

Since inductor windings has resistance, other circuit variations occur: 

 

𝑌(𝑗𝜔) = 𝑗𝜔𝐶 +
1

𝑅 + 𝑗𝜔𝐿
 

= 𝑗𝜔𝐶 +
𝑅 − 𝑗𝜔𝐿

𝑅2 +𝜔2𝐿2
 

𝑌(𝑗𝜔) =
𝑅

𝑅2 +𝜔2𝐿2
+ 𝑗 (𝜔𝐶 −

𝜔𝐿

𝑅2 +𝜔2𝐿2
) 

+-Vs G LC

Is Ix

IG

Vo

IC
IL

+-Vs

R

L

C Vo

Is
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And the resonance condition (Y real) 

𝜔𝑟𝐶 =
𝜔𝑟𝐿

𝑅2 +𝜔𝑟
2𝐿2

 

𝑅2 +𝜔𝑟
2𝐿2 =

𝐿

𝐶
 

𝜔𝑟
2 =

1

𝐿𝐶
− (

𝑅

𝐿
)
2

 

𝜔𝑟 = √
1

𝐿𝐶
− (

𝑅

𝐿
)
2

 

And if R is small it is quite similar to a pure parallel resonant circuit.  Referring back to our quadratic 

pole/zero term  

1 − (𝜔𝜏)2 + 2𝑗𝜁𝜔𝜏 

Where 𝜏 =
1

𝜔𝑜
 and our series impedance  

𝑍(𝑗𝜔) = 𝑅 + 𝑗𝜔𝐿 +
1

𝑗𝜔𝐶
=
𝑅 ∙ 𝑗𝜔𝐶 + (𝑗𝜔)2𝐿𝐶 + 1

𝑗𝜔𝐶
 

=
1

𝑗𝜔𝐶
(1 − 𝜔2𝐿𝐶 + 𝑗𝜔𝑅𝐶) 

Then by comparison of terms:  

𝜏2 → 𝐿𝐶 =
1

𝜔𝑜
2

 

2𝜁𝜏 → 𝑅𝐶 

𝜁 =
𝑅𝐶

2𝜏
=
𝑅𝐶𝜔𝑜
2

=
1

2𝑄
 

Or 

𝑄 =
1

2𝜁
 

High damping -> low Q, low damping -> high Q.   

Example 

 

+-Vs G LC
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𝑉𝑠 = 120 0°, G = 0.01S, C = 600F, L = 120mH. Find the branch currents at resonance. First: 

𝜔𝑜 =
1

√𝐿𝐶
=

1

√120 ∙ 10−3 ∙ 600 ∙ 10−6
= 117.85𝑟𝑎𝑑/𝑠 

Required to find admittance/impedance: 

𝑌𝑐 = 𝑗𝜔𝑜𝐶 = 7.07 ∙ 10−2𝑗𝑆 

𝑌𝐿 =
1

𝑗𝜔𝑜𝐿
= −7.07 ∙ 10−2𝑗𝑆 

Note same magnitude!  And: 

𝐼𝐺 = 𝐺𝑉𝑆 = 1.2 0° 

𝐼𝐶 = 𝑌𝑐𝑉𝑆 = 8.49 90° 

𝐼𝐿 = 𝑌𝐿𝑉𝑆 = 8.49 − 90° 

So 

𝐼𝑆 = 𝐼𝐺 + 𝐼𝐶 + 𝐼𝐿 = 1.2 0° = 𝐼𝐺 

Example 

 

Find 𝜔𝑜 and 𝜔𝑟  for R = 50 and 5.   

𝜔𝑜 =
1

√𝐿𝐶
=

1

√50 ∙ 10−3 ∙ 5 ∙ 10−6
=
2000𝑟𝑎𝑑

𝑠
= 318.3𝐻𝑧 

If R = 50 

𝜔𝑟 = √
1

𝐿𝐶
−
𝑅2

𝐿2
= √

1

50 ∙ 10−3 ∙ 5 ∙ 10−6
− (

50

50 ∙ 10−3
)
2

=
1732𝑟𝑎𝑑

𝑠
= 275.7𝐻𝑧 

If R = 5 

𝜔𝑟 = √
1

50 ∙ 10−3 ∙ 5 ∙ 10−6
− (

5

50 ∙ 10−3
)
2

=
1997𝑟𝑎𝑑

𝑠
= 317.9𝐻𝑧 

R

50mH
5F

5 0  
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