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Phasor Analysis with Kirchoff’s Laws 

Kirchoff’s laws apply in the frequency domain and can be used to analyze steady state AC circuit 

response.   

Voltages and currents must be expressed as phasors, then the analysis is similar to resistive circuits but 

with complex coefficients.   

For simple circuits:   

• Ohm’s Law   V = I Z 

• Combinations    Zs, YP 

• KVL, KCL 

• Current and voltage division 

For more complicated circuits: 

• Nodal analysis 

• Loop analysis  

• Superposition 

• Thevenin and Norton’s theorems 

 

Example Find all Voltages and Currents: 

 

We can use the equivalent impedance Zeq to find current I1: 

𝑍𝑒𝑞 = 4 + 6𝑗//(8 − 4𝑗) 

= 4 +
6𝑗(8 − 4𝑗)

6𝑗 + 8 − 4𝑗
 

= 4 +
24 + 48𝑗

8 + 2𝑗
 

= 4 +
53.66∠63.43

8.246∠14.04
 

= 4 + 6.51∠49.39 

= 4 + 4.24 + 4.94𝑗 = 8.24 + 4.94𝑗 

I2

I1

   = 24∠60 

4W

6jW

8W

-4jW

I3

V1 V2
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𝑍𝑒𝑞 = 9.61∠30.94 

Then 

𝐼1 =
𝑉

𝑍𝑒𝑞
=

24∠60

9.61∠30.94
= 2.5∠29.06 

And 

𝑉1 =   − 4𝐼1 

= 24∠60 − 4 ∙ 2.5∠29.06 

= (12 + 20.78𝑗) − (8.47 + 4.86𝑗) 

= 3.26 + 15.92𝑗 

= 16.25∠78.4 

Voltage division would also work: 

𝑉1 =   ∙
6𝑗//(8 − 4𝑗)

4 + 6𝑗//(8 − 4𝑗)
 

=   ∙
6.51∠49.39

9.61∠30.94
 

=
24 ∙ 6.51

9.61
∠(60 + 49.39 − 30.94) 

 

= 16.26∠78.45 

Knowing V1 we can find I2 and I3:  

𝐼2 =
𝑉1
6𝑗

=
16.26∠78.45

6∠90
= 2.71∠ − 11.58 

𝐼3 =
𝑉1

8 − 4𝑗
=

16.26∠78.45

8.94∠ − 26.56
= 1.82∠105 

Current division also works: 

𝐼2 = 𝐼1 ∙
8 − 4𝑗

8 − 4𝑗 + 6𝑗
=

(2.5∠29.06) ∙ (8.94∠ − 26.56)

8.24∠14.04
= 2.71∠ − 11.54 

Finally 

𝑉2 = 𝐼3 ∙ −4𝑗 = 1.82 ∙ 4∠(105 − 90) = 7.28∠15 

 

Analysis Techniques 

Phasor techniques can be applied to more complicated circuits 

real

imaginary

𝐼1

𝐼1 = 𝐼2+ 𝐼3

𝐼2

𝐼3
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Example find Io: 

 

We first note that: 

𝑉2 = 𝑉1 + 6∠0 

(there is a voltage source connecting these two nodes) 

1) KCL solution: 

Node 1:  

𝑉1
1 + 𝑗

− 2∠0 + 𝐼𝑌 = 0 

𝐼𝑌 = 2∠0 −
𝑉1

1 + 𝑗
 

Node 2: 

𝑉2
1
+

𝑉2
1 − 𝑗

− 𝐼𝑌 = 0 

𝐼𝑌 =
𝑉2
1

+
𝑉2

1 − 𝑗
 

𝐼𝑌 = 𝑉1 + 6∠0 +
𝑉1 + 6∠0

1 − 𝑗
 

Setting these two equations to be equal (remove IY): 

𝑉1 + 6∠0 +
𝑉1 + 6∠0

1 − 𝑗
= 2∠0 −

𝑉1
1 + 𝑗

 

𝑉1 +
𝑉1

1 − 𝑗
+

𝑉1
1 + 𝑗

= −4∠0 −
6∠0

1 − 𝑗
 

𝑉1 (1 +
1

1 − 𝑗
+

1

1 + 𝑗
) = −4 −

6

1 − 𝑗
 

𝑉1 (1 − 𝑗 + 1 +
1 − 𝑗

1 + 𝑗
) = −4 + 4𝑗 − 6 

𝑉1 (2 − 𝑗 +
−2𝑗

2
) = −10 + 4𝑗 

+-

Io

1W

1W

1jW

V1
V2

1W -1jW

6∠0  𝑉

2∠0   

IY
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𝑉1(2 − 2𝑗) = −10 + 4𝑗 

𝑉1 =
−10 + 4𝑗

2 − 2𝑗
=

10.77∠(158.2)

2√2∠(−45)
= 3.81∠203.2 

Now 𝑉2 = 𝑉1 + 6∠0 = −3.50 − 1.5𝑗 + 6 = 2.5 − 1.5𝑗 = 2.92∠ − 31 

Therefore: 𝐼𝑜 =
𝑉2

1
= 2.92∠ − 31  

2) KVL Solution: 

 

We first note that: 

𝑖2 − 𝑖1 = 2∠0 

𝑖2 = 𝑖1 + 2 

Loop1: 

−𝑖1(1 + 𝑗) − 𝑉𝑌 = 0 

𝑉𝑌 = −𝑖1(1 + 𝑗) 

Loop 2: 

𝑉𝑌 + 6∠0 − 1(𝑖2 − 𝑖3) = 0 

𝑉𝑌 = (𝑖2 − 𝑖3) − 6 

𝑉𝑌 = (𝑖1 + 2 − 𝑖3) − 6 

𝑉𝑌 = 𝑖1 − 𝑖3 − 4 

Loop 3: 

1(𝑖2 − 𝑖3) − 𝑖3(1 − 𝑗) = 0 

𝑖2 − 2𝑖3 + 𝑖3𝑗 = 0 

𝑖1 + 2 − 2𝑖3 + 𝑖3𝑗 = 0 

𝑖1 =  2𝑖3 − 𝑖3𝑗 − 2 

Removing VY from the first two loop equations yields: 

−𝑖1(1 + 𝑗) = 𝑖1 − 𝑖3 − 4 

+-
Io

1W

1W

1jW

1W -1jW

6∠0  𝑉

2∠0   VY

i1
i2

i3
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−𝑖1 − 𝑖1𝑗 = 𝑖1 − 𝑖3 − 4 

𝑖3 = 2𝑖1 + 𝑗𝑖1 − 4 

Using the third loop equation to remove i1: 

𝑖3 = 2(2𝑖3 − 𝑖3𝑗 − 2) + 𝑗(2𝑖3 − 𝑖3𝑗 − 2) − 4 

𝑖3 = 4𝑖3 − 2𝑖3𝑗 − 4 + 2𝑗𝑖3 + 𝑖3 − 2𝑗 − 4 

𝑖3 = 5𝑖3 − 8 − 2𝑗 

𝑖3 = 5𝑖3 − 8 − 2𝑗 

4𝑖3 = 8 + 2𝑗 

𝑖3 = 2 + 0.5𝑗 

Therefore: 

𝑖1 =  2𝑖3 − 𝑖3𝑗 − 2 

𝑖1 = 4 + 𝑗 − 2𝑗 + 0.5 − 2 

𝑖1 = 2.5 − 𝑗 

And 

𝑖2 = 𝑖1 + 2 = 4.5 − 𝑗 

Finally: 

𝐼𝑜 = 𝑖2 − 𝑖3 = 4.5 − 𝑗 − 2 − 0.5𝑗 = 2.5 − 1.5𝑗 = 2.92∠ − 31 

3) Superposition Solution:  

Apply one independent source at a time starting with the current source: 

 

Combine the impedances in the branches we are not interested in: 

𝑍′ = (1 + 𝑗)//(1 − 𝑗) =
(1 + 𝑗)(1 − 𝑗)

(1 + 𝑗) + (1 − 𝑗)
=

2

2
= 1 

Thus we have simply two 1ohm resistors in parallel so each one will draw half the current and Io’=1A 

Now the voltage source: 

Io’

1W

1W

1jW

1W -1jW
2∠0   
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A voltage divider exists between 1+j on the left and 1//(1-j) on the right so:  

(1 − 𝑗)//1 = (1 +
1

1 − 𝑗
)
−1

 

= (
2 − 𝑗

1 − 𝑗
)
−1

=
1 − 𝑗

2 − 𝑗
=

1 − 𝑗

2 − 𝑗
(
2 + 𝑗

2 + 𝑗
) =

2 + 𝑗 − 2𝑗 + 1

4 + 1
=

3 − 𝑗

5
= 0.6 − 0.2𝑗 

And knowing that: 

𝑉′ = 6
0.6 − 0.2𝑗

(0.6 − 0.2𝑗) + (1 + 𝑗)
= 6

0.6 − 0.2𝑗

1.6 + 0.8𝑗
= 6

0.632∠ − 18.43

1.79∠26.56
= 2.11∠ − 45 

And therefore: 

𝐼𝑜
′′ =

𝑉′

1
= 2.11∠ − 45 

So the total current is: 

𝐼𝑜 = 𝐼𝑜
′ + 𝐼𝑜

′′ = 1 + 2.11∠ − 45 = 1 + 1.5 − 1.5𝑗 = 2.5 − 1.5𝑗 = 2.91∠ − 31 

Which is the same as the last two solutions (strange????).   

4) We could use source exchange (transformation) not that commonly used…  

5) Thevenin Analysis 

 

We have removed the 1ohm load and now we will use superposition.   

𝑉𝑂𝐶 = 2 ∙
1 + 𝑗

(1 + 𝑗) + (1 − 𝑗)
∙ (1 − 𝑗) + 6𝑉 ∙

1 − 𝑗

1 + 𝑗 + 1 − 𝑗
 

(note the first term is superposition on the current source and the second term is superposition on the 

voltage source).   

+-

Io’’

1W

1W

1jW

1W -1jW

6∠0  𝑉

V’

+-

1W

1W

1jW

-1jW

6∠0  𝑉

2∠0   

IY

VOC
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= 2 ∙
1 + 𝑗

2
∙ (1 − 𝑗) +

6𝑉

2
∙ (1 − 𝑗) 

= 2 ∙ 1 + (3 − 3𝑗) = (5 − 3𝑗)𝑉 

And: 

𝑍𝑇𝐻 = (1 + 𝑗)//(1 − 𝑗) 

=
(1 + 𝑗)(1 − 𝑗)

1 + 𝑗 + 1 − 𝑗
=

1

2
∙ 2 = 1Ω 

Reconnecting the load: 

𝐼𝑂 =
𝑉𝑇𝐻
2

= 2.91∠ − 31 

6) Norton Analysis 

 

𝐼𝑆𝐶 = 2 +
6

1 + 𝑗
=

2 + 2𝑗 + 6

1 + 𝑗
=

8 + 2𝑗

1 + 𝑗
 

Zth is the same as before and is 1 ohm.   Since the load is also 1ohm: 

𝐼𝑜 =
1

2
𝐼𝑆𝐶 =

4 + 𝑗

1 + 𝑗
=

(4 + 𝑗)(1 − 𝑗)

2
= 2.5 − 1.5𝑗 = 2.91∠ − 31 

Filter Networks 

We know enough now to design simple passive filters.  

Filters are circuits designed to pass signals in a specific frequency range, and attenuate or reject signals 

outside this range.   

Low-pass filters pass low frequencies and reject high frequencies.  

High-pass filters pass high frequencies and reject low frequencies.  

Band-pass filters pass a frequency band.  

Band-reject filters are designed to reject a specific frequency band.   

An ideal filter would have a definite cut-off frequency o completely passing all signals on one side, 

rejecting all signals on the other side.  However, a real filter will have a more gradual cut-off.   

+-

1W

1W

1jW

-1jW

6∠0  𝑉

2∠0   ISC
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Consider element impedance as a function of frequency: 

 

 

Freq.

Magnitude |ZR|

R

0 

Freq.

Phase ZR

𝑍 =  R

Freq.

Magnitude |ZL|

90 

Freq.

Phase ZL

𝑍 = 𝑗  L
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For a filter we are interested in a ratio of output to input  

 

And we use a gain as a transfer function to express this: 

𝐺𝑉(𝑗 ) =
𝑉𝑜(𝑗 )

𝑉 (𝑗 )
 

Often we use 𝑠 = 𝑗  (for a Laplace transform, complex freq) 

𝐺𝑉(𝑠) =
𝑉𝑜(𝑠)

𝑉 (𝑠)
 

Consider a simple RC circuit: 

 

From voltage divider: 

𝑉𝑜 = 𝑉𝑖

1
𝑗 𝐶

 +
1

𝑗 𝐶

 

𝐺(𝑗 ) =
𝑉𝑜(𝑗 )

𝑉𝑖(𝑗 )
=

1

1 + 𝑗  𝐶
 

Freq.

Magnitude |ZC|

−90 

Freq.

Phase ZC

𝑍𝐶 =
1

𝑗 𝐶
C

Filter𝑉𝑆(𝑗 ) 𝑉𝑜(𝑗 )

+-Vi

R

Vo
C
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𝐺(𝑗 ) =
𝑉𝑜(𝑗 )

𝑉𝑖(𝑗 )
=

1

1 + 𝑗 𝜏
 

 𝜏 =  𝐶 

Magnitude: 

|𝐺( )| =
1

√1 + ( 𝜏)2
 

Phase: 

𝜙( ) = − 𝑎𝑛−1( 𝜏) 

Maximum occurs when  = 0 use define a break frequency when |𝐺( )| =
1

√2
corresponding to ½ 

maximum power (V2/Z) or: 

 =
1

𝜏
 

Magnitude is expressed in decibels = dB = 20log|G|.  We can plot this approximately using 3 points:  

 → 0   |𝐺| = 1 = 0𝑑𝐵 

 =
1

𝜏
   |𝐺| =

1

√2
 = −3𝑑𝐵 

 → ∞   |𝐺| ≅
1

 𝜏
 = −20 log( ) − 20 log(𝜏) 𝑑𝐵 

(𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 
−20𝑑𝐵

𝑑𝑒𝑐𝑎𝑑𝑒
)   

 

This is a bode plot.   

We can use a similar approach for phase: 

 → 0   𝜙 ≅ 0 

 =
1

𝜏
   𝜙 = −45 

|G|

log ( )
0dB

 𝑐 =
1

𝜏

−20  /   
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 → ∞   𝜙 ≅ −90 

 

This would be a passive low pass filter.   

Now consider voltage across the resistor in an RC network: 

 

𝑉𝑜 = 𝑉𝑖
 

 +
1

𝑗 𝐶

 

𝐺(𝑗 ) =
𝑉𝑜(𝑗 )

𝑉𝑖(𝑗 )
=

𝑗  𝐶

1 + 𝑗  𝐶
 

Consider the same three regions: 

 → 0   |𝐺| ≅  𝜏 = 20 log( ) + 20 log(𝜏) 

 =
1

𝜏
   |𝐺| =

1

√2
 = −3𝑑𝐵 

 → ∞   |𝐺| =
 𝜏

 𝜏
 = 1 = 0𝑑𝐵 

log ( )

-90

 𝑐 =
1

𝜏

𝜙

+-Vi R Vo

C
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 → 0   𝜙 = 90 

 =
1

𝜏
   𝜙 = 45 

 → ∞   𝜙 = 0 

This is called a high-pass characteristic.   

𝜙( ) = 90 −  𝑎𝑛−1( 𝜏) 

A series RL circuit could also be used: 

 

𝑉𝑜 = 𝑉𝑖
𝑗  

 + 𝑗  
 

𝐺(𝑗 ) =
𝑉𝑜(𝑗 )

𝑉𝑖(𝑗 )
=

𝑗 
 
 

1 + 𝑗 
 
 

=
𝑗 𝜏

1 + 𝑗 𝜏
 

This is a high pass filter.  

 

𝑉𝑜 = 𝑉𝑖
 

 + 𝑗  
 

|G|

log ( )
0dB

 𝑐 =
1

𝜏

20  /   
log ( )

90

 𝑐 =
1

𝜏

𝜙

0

+-Vi

R

Vo
L

+-Vi R Vo

L
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𝐺(𝑗 ) =
𝑉𝑜(𝑗 )

𝑉𝑖(𝑗 )
=

1

1 + 𝑗 
 
 

=
1

1 + 𝑗 𝜏
 

This is a low pass filter.  So these look like the RC examples (but 𝜏 =
 

 
) 

What if we have three elements? 

 

𝑉𝑜 = 𝑉𝑖
 

 + 𝑗  +
1

𝑗 𝐶

 

𝐺(𝑗 ) =
 

 + 𝑗 (  −
1
 𝐶)

 

At low frequencies  → 0 

|𝐺(𝑗 )| ≅   𝐶 ≅ 0 

Slope is 20dB/dec.   

At high frequencies  → ∞ 

|𝐺(𝑗 )| ≅
 

  
≅ 0 

Slope is -20dB/dec.   

When   =
1

𝜔𝐶
 

|𝐺(𝑗 )| = 1 = 0𝑑𝐵 

 𝑜 =
1

√ 𝐶
 

And 3dB (1/2 power) points are when: 

  = ±(  −
1

𝜔𝐶
) 

(There are two points).   

{ 𝐶 =  2 𝐶 − 1
 𝐶 = 1 − 2 𝐶

 

+-Vi R Vo

L C
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{
 2 +

 

 
 −

1

 𝐶
= 0

 2 −
 

 
 −

1

 𝐶
= 0

 

Noting that 𝑜 =
1

√ 𝐶
 

{
 2 +

 

 
 −  𝑜

2 = 0

 2 −
 

 
 −  𝑜

2 = 0

 

Solving gives the upper and lower -3dB points: 

  𝑂 =
−
 
 
+ √(

 
 
)
2

+ 4 𝑜
2

2
 

 𝐻𝐼 =

 
 + √(

 
 )

2

+ 4 𝑜
2

2
 

The filter bandwidth is: 

 𝐻𝐼 −  𝑂 =
 

 
 

This is a bandpass filter.   

 

And a band-reject is possible taking the voltage across the LC: 

 

 

|G|

log ( )
0dB

20  /   
log ( )

90
𝜙

0

−20  /   

-90

+-Vi

R

Vo

L

C


