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AC Steady-State Analysis – Phasors and Frequency Domain Analysis 

At the start of the course we discussed the sine wave 

𝑥(𝑡) = 𝑋𝑚sin⁡(𝜔𝑡) 

Xm = Amplitude or peak value 

 = angular frequency (radians/sec) 

Obviously, the function repeats every 2 radians.  So: 

𝑥(𝑡 + 𝑇) = 𝑥(𝑡) 

For period 𝑇 =
1

𝑓
=

2𝜋

𝜔
 

And we may also have a phase angle measured from the same reference.  

𝑥(𝑡) = 𝑋𝑚sin⁡(𝜔𝑡 + 𝜃) 

 

Note 𝑋𝑚sin⁡(𝜔𝑡 + 𝜃) leads 𝑋𝑚sin⁡(𝜔𝑡) since it peaks at an earlier time.  We could also say 𝑋𝑚sin⁡(𝜔𝑡) 

lags 𝑋𝑚sin⁡(𝜔𝑡 + 𝜃) 

Two sinusoids with the same phase angle are ‘in phase’.  Phase angle is usually given in degrees rather 

than radians. We may write  

𝑥(𝑡) = 𝑋𝑚sin⁡(𝜔𝑡 +
𝜋

2
) 

Or  

𝑥(𝑡) = 𝑋𝑚sin⁡(𝜔𝑡 + 90˚) 

𝜔𝑡 is in radians, so this isn’t rigorously correct, but it generally easy to understand.   Notice that sine and 

cosine are functions that differ only by phase angle 

𝑐𝑜𝑠(𝜔𝑡) = sin⁡(𝜔𝑡 +
𝜋

2
) 

Or 

𝜔𝑡

𝑋𝑚sin(𝜔𝑡)

𝑋𝑚si n( 𝜔𝑡 + 𝜃)

2𝜋𝜋

𝑥(𝜔𝑡)
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𝑠𝑖𝑛(𝜔𝑡) = 𝑐𝑜𝑠⁡(𝜔𝑡 −
𝜋

2
) 

And we can use either form depending on our phase reference.  

To compare phase of sinusoids we need them to:  

➔ Have the same frequency 

➔ Have positive amplitude (negative =⁡180˚ phase shift) 

➔ Both should be sine wave or cosine waves (90˚phase difference) 

You may want to review some sinusoid identities, in particular sum and difference of angles, half or 

double angle formulas, sin2, cos2.  

Sinusoidal Forcing Functions 

If we apply a sinusoid to a linear circuit, it will produce sinusoidal steady state voltage and current (at 

the same frequency as the input).   

 

If 𝑣(𝑡) = 𝐴sin⁡(𝜔𝑡 + 𝜃) then i(t) must have the form 𝑖(𝑡) = 𝐵sin⁡(𝜔𝑡 + 𝜙) and to find a solution we 

need only find B and 𝜙. 

Example: 

Say we have a simple RL circuit: 

 

As with transient response, KVL gives us: 

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖(𝑡) = 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡) 

We can assume a solution for the forced response 

𝑖(𝑡) = 𝐴𝑐𝑜𝑠⁡(𝜔𝑡 + 𝜙)                                                    (*******) 

= 𝐴𝑐𝑜𝑠(𝜙)cos⁡(𝜔𝑡) − 𝐴𝑠𝑖𝑛(𝜙)sin⁡(𝜔𝑡) 

= 𝐴1 cos(𝜔𝑡) + 𝐴2sin⁡(𝜔𝑡) 

We can substitute this into our D.E. 

+- V(t)

i(t)

+-

R

L

i(t)

𝑣 𝑡 = 𝑉𝑚cos(𝜔𝑡)
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𝐿(−𝐴1𝜔sin⁡(𝜔𝑡) + 𝐴2𝜔cos⁡(𝜔𝑡)) + 𝑅(𝐴1 cos(𝜔𝑡) + 𝐴2 sin(𝜔𝑡)) = 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡) 

Collect terms in sin and cos: 

−𝐴1𝜔𝐿 + 𝑅𝐴2 = 0 

𝐴2𝜔𝐿 + 𝑅𝐴1 = 𝑉𝑚 

2 equations for A1 and A2. Solving these: 

𝐴1 =
𝑅𝑉𝑚

𝑅2 +𝜔2𝐿2
= 𝐴𝑐𝑜𝑠⁡(𝜙) 

𝐴2 =
𝜔𝐿𝑉𝑚

𝑅2 +𝜔2𝐿2
= −𝐴𝑠𝑖𝑛⁡(𝜙) 

The last terms above are from (******) 

So tan(𝜙) =
𝐴𝑠𝑖𝑛⁡(𝜙)

𝐴𝑐𝑜𝑠⁡(𝜙)
=

𝜔𝐿

𝑅
 

And  (𝐴𝑐𝑜𝑠⁡(𝜙))2 + (𝐴𝑠𝑖𝑛⁡(𝜙))2 = 𝐴2 =
𝑉𝑚

2

𝑅2+𝜔2𝐿2
 

So 𝑖(𝑡) =
𝑉𝑚

√𝑅2+𝜔2𝐿2
𝑐𝑜𝑠(𝜔𝑡 − 𝑡𝑎𝑛−1(

𝜔𝐿

𝑅
)) 

Which is a rather tedious approach for a simple circuit…. 

We can simplify analysis by using Euler’s equation:  

𝑒𝑗𝜔𝑡 = 𝑐𝑜𝑠(𝜔𝑡) + 𝑗𝑠𝑖𝑛(𝜔𝑡) 

Where j represents a complex number √−1 (often i in other disciplines.  We like i for current, so use j).   

Real part:  𝑅𝑒(𝑒𝑗𝜔𝑡) = 𝑐𝑜𝑠(𝜔𝑡) 

Imaginary part:  𝐼𝑚(𝑒𝑗𝜔𝑡) = 𝑠𝑖𝑛(𝜔𝑡) 

Now say we have an imaginary forcing function 𝑣(𝑡) = 𝑉𝑚𝑒
𝑗𝜔𝑡 (not realizable) 

Then 𝑣(𝑡) = ⁡𝑉𝑚𝑐𝑜𝑠(𝜔𝑡) + 𝑗𝑉𝑚𝑠𝑖𝑛(𝜔𝑡)  from Euler’s equation.   

So the complex forcing function has two parts, and from linearity and superposition we could expect a 

current: 

𝑖(𝑡) = ⁡ 𝐼𝑚𝑐𝑜𝑠(𝜔𝑡) + 𝑗𝐼𝑚𝑠𝑖𝑛(𝜔𝑡) = 𝐼𝑚𝑒
𝑗(𝜔𝑡+𝜙)   

So we could analyze circuit response to a function 𝐴𝑒𝑗(𝜔𝑡)and extract response to 𝐴 cos(𝜔𝑡)why? -> 

properties of the exponential allow us to convert the problem to an algebraic one.   

Lets return to the RL circuit, but instead of applying 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡), we use 𝑉𝑚𝑒
𝑗𝜔𝑡.  Forced response will 

be: 

𝑖(𝑡) = 𝐼𝑚𝑒
𝑗(𝜔𝑡+𝜙) 

With Im and 𝜙 unknown.  The D.E. is: 
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𝐿
𝑑

𝑑𝑡
(𝐼𝑚𝑒

𝑗(𝜔𝑡+𝜙)) + 𝑅𝐼𝑚𝑒
𝑗(𝜔𝑡+𝜙) = 𝑉𝑚𝑒

𝑗(𝜔𝑡) 

And taking the derivative 

𝑗𝜔𝐿𝐼𝑚𝑒
𝑗(𝜔𝑡+𝜙) + 𝑅𝐼𝑚𝑒

𝑗(𝜔𝑡+𝜙) = 𝑉𝑚𝑒
𝑗𝜔𝑡 

𝑒𝑗𝜔𝑡appears in each term so: 

𝑗𝜔𝐿𝐼𝑚𝑒
𝑗(𝜙) + 𝑅𝐼𝑚𝑒

𝑗(𝜙) = 𝑉𝑚 

And:  

𝐼𝑚𝑒
𝑗(𝜙) =

𝑉𝑚
𝑅 + 𝑗𝜔𝐿

=
𝑉𝑚

√𝑅2 +𝜔2𝐿2
𝑒
−𝑗(𝑡𝑎𝑛−1(

𝜔𝐿
𝑅
))

 

(convert to polar form see appendix) 

So  𝐼𝑚 =
𝑉𝑚

√𝑅2+𝜔2𝐿2
  and 𝜙 = −𝑡𝑎𝑛−1 (

𝜔𝐿

𝑅
) 

 

However, our actual forcing function was 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡), so the circuit response is the real part of this 

solution: 

𝑖(𝑡) = 𝐼𝑚𝑐𝑜𝑠(𝜔𝑡 + 𝜙) =
𝑉𝑚

√𝑅2 +𝜔2𝐿2
𝑐𝑜𝑠 (𝜔𝑡 − 𝑡𝑎𝑛−1 (

𝜔𝐿

𝑅
)) 

Which is identical to the previous result.   

Notice the expression 𝑒𝑗𝜔𝑡was in every term cancelled out. So we can write: 

𝑣(𝑡) = 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡 + 𝜃) = 𝑅𝑒[𝑉𝑚𝑒
𝑗(𝜔𝑡+𝜃)] 

= 𝑅𝑒[𝑉𝑚𝑒
𝑗𝜃𝑒𝑗𝜔𝑡] 

= 𝑅𝑒[𝑉𝑚∠𝜃⁡𝑒
𝑗𝜔𝑡] 

And ⁡𝑒𝑗𝜔𝑡 appears in every term of our equations, so we don’t need to write it all the time, and in fact 

we will usually just write:  

𝑉 = 𝑉𝑚∠𝜃     or   𝐼 = 𝐼𝑚∠𝜙 

‘phasor notation’   -> magnitude and phase only.   

Phase angle is based on cosine function so: 

𝐴𝑐𝑜𝑠(𝜔𝑡 ± 𝜃) → 𝐴∠ ± 𝜃 

𝐴𝑠𝑖𝑛(𝜔𝑡 ± 𝜃) → 𝐴∠ ± 𝜃 − 90˚ 

So for our RL series circuit: 

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖(𝑡) = 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡) 
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Becomes: 

𝐿
𝑑

𝑑𝑡
(𝐼𝑒𝑗𝜔𝑡) + 𝑅𝐼𝑒𝑗𝜔𝑡 = 𝑉𝑒𝑗𝜔𝑡 

Or:  

𝑗𝜔𝐿𝐼 + 𝑅𝐼 = 𝑉      (*) 

Then 

𝐼 =
𝑉

𝑅 + 𝑗𝜔𝐿
= 𝐼𝑚∠𝜙 =

𝑉𝑚

√𝑅2 +𝜔2𝐿2
∠ − 𝑡𝑎𝑛−1 (

𝜔𝐿

𝑅
) 

And 

𝑖(𝑡) =
𝑉𝑚

√𝑅2 +𝜔2𝐿2
𝑐𝑜𝑠 (𝜔𝑡 − 𝑡𝑎𝑛−1 (

𝜔𝐿

𝑅
)) 

Note that phasors are usually expressed with positive magnitudes.   

Analysis in equation (*) above, where time dependence is not included is called phasor or frequency 

domain analysis.   

 

Circuit Elements 

Resistor: 

𝑣(𝑡) = 𝑅𝑖(𝑡) 

𝑉𝑚𝑒
𝑗(𝜔𝑡+𝜃𝑣) = 𝑅𝐼𝑚𝑒

𝑗(𝜔𝑡+𝜃𝑖) 

𝑉𝑚𝑒
𝑗𝜃𝑣 = 𝑅𝐼𝑚𝑒

𝑗𝜃𝑖  

𝑉 = 𝑅𝐼 

R is real and doesn’t change phase between v and i.  

Inductor:  

𝑣(𝑡) = 𝐿
𝑑𝑖

𝑑𝑡
 

𝑉𝑚𝑒
𝑗(𝜔𝑡+𝜃𝑣) = 𝐿

𝑑

𝑑𝑡
[𝐼𝑚𝑒

𝑗(𝜔𝑡+𝜃𝑖)] 

𝑉𝑚𝑒
𝑗(𝜃𝑣) = 𝑗𝜔𝐿𝐼𝑚𝑒

𝑗(𝜃𝑖) 

Differential equations + 
sinusoidal forcing function 
in the time domain. 

Algebraic equations with 
complex numbers in 
frequency domain. 
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𝑉 = 𝑗𝜔𝐿𝐼 

𝑗𝜔𝐿is complex and introduces a 90˚ phase shift between V and I.  Voltage leads current by 90˚.   

Capacitor:  

𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 

𝐼𝑚𝑒
𝑗(𝜔𝑡+𝜃𝑖) = 𝐶

𝑑

𝑑𝑡
[𝑉𝑚𝑒

𝑗(𝜔𝑡+𝜃𝑣)] 

𝐼 = 𝑗𝜔𝐶𝑉 

𝑗𝜔𝐶⁡is complex and introduces a 90˚ phase shift between V and I.  Current leads current by 90˚. 

Example: 

Voltage 𝑣(𝑡) = 24𝑐𝑜𝑠(377𝑡 + 75˚)𝑉 is applied across a 6 resistor.  What is the current? 

 

Phasor Voltage 𝑉 = 24∠75˚⁡⁡⁡𝑉 

Phasor Current 𝐼 =
𝑉

𝑅
=

24∠75˚

6
= ⁡4∠75˚⁡𝐴⁡⁡ 

Or time domain current: 

𝑖(𝑡) = 4𝑐𝑜𝑠(377𝑡 + 75˚)⁡𝐴 

Example: 

Voltage 𝑣(𝑡) = 12𝑐𝑜𝑠(377𝑡 + 20˚)𝑉 is applied across a 20mH inductor.  What is the current? 

𝐼 =
𝑉

𝑗𝜔𝐿
=
12∠20˚

𝜔𝐿∠90˚
=

12∠20˚

377(20 ∙ 103)∠90˚
= 1.59∠(20 − 90)˚ = 1.59∠(−70)˚⁡𝐴 

Time domain:  

𝑖(𝑡) = 1.59𝑐𝑜𝑠(377𝑡 − 70˚)⁡𝐴 

 

Complex Numbers 

Rectangular representation 

𝐴 = 𝑥 + 𝑗𝑦 

 

 

 

 

real

imaginary

x

y
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Can also be written in polar coordinates  

𝐴 = 𝑧∠𝜃 

And 

𝑧 = √𝑥2 + 𝑦2  

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
)  

𝑥 = 𝑧𝑐𝑜𝑠(𝜃)  

𝑦 = 𝑧𝑠𝑖𝑛(𝜃)  

Sums are easy in rectangular form:  

𝐴 = 4 + 𝑗3 = 5∠36.9˚ 

𝐵 = 3 + 𝑗4 = 5∠53.1˚ 

𝐴 + 𝐵 = (4 + 3) + 𝑗(3 + 4) = 7 + 𝑗7 = 9.9∠45˚ 

Products are easy in polar form 

𝐴 ∙ 𝐵 = 5 ∙ 5∠(36.9 + 53.1)˚ = 25∠90˚ 

Note polar form:  𝑍1𝑒
𝑗𝜃1 ∙ 𝑍2𝑒

𝑗𝜃2 = 𝑍1 ∙ 𝑍2𝑒
𝑗𝜃1𝑒𝑗𝜃2 = 𝑍1𝑍2𝑒

𝑗(𝜃1+𝜃2) 

 

Impedance and Admittance 

Notice for each element, the phasor approach gave us an algebraic equation for the I-V relationship,  

𝑉 = 𝐼 ∙ 𝑍  where 𝑍 = {

𝑅
𝑗𝜔𝐿
1

𝑗𝜔𝐶

  depending on the element.  

We can generalize and define two terminal input impedance or driving point impedance 

𝑍 =
𝑉

𝐼
=
𝑉𝑚
𝐼𝑚

∠(𝜃𝑣 + 𝜃𝑖)⁡⁡⁡⁡[Ω] 

In rectangular form  

𝑍(𝜔) = 𝑅(𝜔) + 𝑗𝑋(𝜔) 

R = real (resistive) part 

X = imaginary (reactive) part 

Note Z depends on frequency (due to reactance), Z is complex, but is not a phasor since it is not a 

sinusoid.   

 

real

imaginary

z

𝜃
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For a Resistor                              𝑍 = 𝑅 

          Inductor:                            𝑍 = 𝑗𝜔𝐿 = 𝑗𝑋𝐿 = 𝜔𝐿∠90˚ 

          Capacitor:                          𝑍 =
1

𝑗𝜔𝐶
= 𝑗𝑋𝐶 =

1

𝜔𝐶
∠ − 90˚ = −

1

𝜔𝐶
∠90˚ 

KVL and KCL are valid in the frequency domain.  You can go back to analysis for series and parallel 

resistance to show: 

𝑍𝑆 = 𝑍1 + 𝑍2 +⋯+ 𝑍𝑁  

1

𝑍𝑃
=

1

𝑍1
+

1

𝑍2
+⋯+

1

𝑍𝑁
 

Example Find i(t): 

 

𝜔𝐿 = 377 ∙ 40 ∙ 10−3 = 15.08 

1

𝜔𝐶
= 53.05 

Phasor voltage (as cosine) 𝑉 = 120∠(60 − 90)˚ = 120∠(−30)˚ 

Find i2(t) impedance:   

𝑍2 = 𝑅 + 𝑗𝜔𝐿 = 20 + 𝑗15.08 = 25∠(37)˚ 

𝐼2 =
𝑉

𝑍2
=
120∠(−30)˚

25∠(37)˚
= 4.8∠(−67)˚⁡⁡𝐴 

Find i1(t) impedance:   

𝐼1 =
𝑉

𝑍1
=
120∠(−30)˚

−𝑗53.05
=

120∠(−30)˚

53.05∠(−90)˚
= 2.26∠60˚⁡⁡𝐴 

Find total current: 

𝐼 = 𝐼1 + 𝐼2 = 4.8∠(−67)˚ + 2.26∠(60)˚ 

= (1.87 − 𝑗4.42) + (1.13 + 𝑗1.957) 

= 3 − 𝑗2.46 = 3.88∠(−39.35)˚⁡⁡ 

50mF

20

40mH

i2(t)

i1(t)

i(t)

𝑣 𝑡 = 120𝑠𝑖𝑛 377𝑡 + 60˚ ⁡V
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Or we can combine impedances: 

𝑍 = (𝑅 + 𝑗𝜔𝐿)// (
1

𝑗𝜔𝐶
) 

= (20 + 𝑗15)//−𝑗53 

= (
(20 + 𝑗15)(−𝑗53)

20 + 𝑗15 − 𝑗53
) 

= (
(53𝑋15) − 𝑗1060

70 − 𝑗38
) =

1325∠(−53.13)˚

42.94∠(−62.24)˚
 

= 30.86∠(−53.13 + 62.24)˚ 

= 30.86∠(9.11)˚ 

And 

𝐼 =
𝑉

𝑍
=

120∠(−30)˚

30.86∠(9.11)˚
= 3.89∠(−39.1)˚ 

Or  

𝑖(𝑡) = 3.89𝑐𝑜𝑠(377𝑡 − 39.1˚)⁡𝐴 

Conductance 

Recall conductance 𝐺 =
1

𝑅
 

There is a similar quantity associated with impedance which is called admittance 

𝑌 =
1

𝑍
=

𝐼

𝑉
⁡⁡⁡⁡[𝑆] 

𝑌 = 𝐺 + 𝑗𝐵 

G = conductance  

B = susceptance 

And 

𝐺 + 𝑗𝐵 =
1

𝑅 + 𝑗𝑋
 

Then 𝐺 =
𝑅

𝑅2+𝑋2⁡⁡  and  𝐵 =
−𝑋

𝑅2+𝑋2 

And using KVL and KCL you can show: 

𝑌𝑃 = 𝑌1 + 𝑌2 +⋯+ 𝑌𝑁 

1

𝑌𝑆
=

1

𝑌1
+

1

𝑌2
+⋯+

1

𝑌𝑁
 



87 
 

So we are most likely to use admittance in parallel circuits and in series mainly focus on impedance.  

 

Sometimes circuit operation and relationships between parameters are most easily seen with a 

graphical representation -> a phasor diagram shows currents and voltages in the complex plane.   

Example: 

 

𝐼𝑆 = 𝐼𝑅 + 𝐼𝐶 + 𝐼𝐿 =
𝑉

𝑅
+

𝑉

𝑗𝜔𝐿
+

𝑉

1
𝑗𝜔𝐶

 

If 𝑉 = 𝑉𝑚∠0˚ (an arbitrary phase reference) then:  

𝐼𝑆 =
𝑉𝑚
𝑅
∠0˚ +

𝑉𝑚
𝜔𝐿

∠ − 90˚ + 𝑉𝑚𝜔𝐶∠90˚ 

 

IS can be found by summing the three currents life vectors.  

 

Note at some frequency |IL| = |IC| or 
1

𝜔𝐿
= 𝜔𝐶 → 𝜔 = √

1

𝐿𝐶
⁡     

IRIC
IL

IS

real

imaginary

IR

IC

IL

real

imaginary

IR

IS
IL+IC
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Of course voltage and current can have any relative phase.  Lets consider our last numerical example 

which we just solved: 

 

 

Note you can only observe the real part of voltage or current at any time -> but it changes predictably 

with time.   

When we do phasor analysis we work at some instant in time, and our solution applies to all times.  

It might help you to picture the phasors rotating counter clockwise in time with angular frequency 𝜔. 

 

As the phasor rotates, it sweeps out a sinusoidal pattern on the real axis.   

real

imaginary

𝐼1 = 2.26∠60˚

𝐼2 = 4.8∠ − 67˚

𝑉 = 120∠ − 30˚

real

imaginary

𝐼1 = 2.26∠60˚

𝐼2 = 4.8∠ − 67˚

𝐼 = 𝐼1 + 𝐼2

real

imaginary

𝑉 = 120∠ − 30˚

𝜔
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All the phasor quantities rotate together, the phase between them doesn’t change (if frequency is 

fixed).   

Example Find Zeq:  

  

Z2 and Z3 are easily found: 

Z2 = 2+j4         Z3= 4+j2 

Now using admittance:  

𝑌1 = 𝑌𝑅 + 𝑌𝐶 =
1

1
+

1

−𝑗2
= 1 + 0.5𝑗 

𝑍1 =
1

𝑌1
=

1

1 + 0.5𝑗
= 0.8 − 0.4𝑗 

𝑌4 = 𝑌𝐿 + 𝑌𝐶 =
1

4𝑗
+

1

−2𝑗
= 0.25𝑗 

𝑍4 =
1

𝑌4
= −4𝑗 

Now we note that Z3 and Z4 are in series: 

𝑍34 = 𝑍3 + 𝑍4 = 4 + 2𝑗 − 4𝑗 = 4 − 2𝑗 

Z34 is in parallel with Z2 so: 

𝑌234 = 𝑌2 + 𝑌34 =
1

2 + 4𝑗
+

1

4 − 2𝑗
= 0.3 − 0.1𝑗 

𝑍234 = 3 + 𝑗 

This is in series with Z1 so:  

𝑍𝑒𝑞 = 𝑍1 + 𝑍234 = 0.8 − 0.4𝑗 + 3 + 𝑗 = 3.8 + 0.6𝑗 

 

1

Zeq

4 j2

j6

2

-j2

-j2j4

Z1

Z2

Z3

Z4

-j2


