AC Steady-State Analysis — Phasors and Frequency Domain Analysis

At the start of the course we discussed the sine wave
x(t) = X, sin (wt)

Xm = Amplitude or peak value

o = angular frequency (radians/sec)

Obviously, the function repeats every 27 radians. So:
x(t+T)=x(t)

odT = L_2m
For per|odT—f— -

And we may also have a phase angle measured from the same reference.
x(t) = Xy sin (wt + 0)

x(wt) 4

T 2T wt

»

Xpsin(wt + 6)

Note X,,,sin (wt + ) leads X,,;sin (wt) since it peaks at an earlier time. We could also say X,,,sin (wt)
lags X,,sin (wt + 0)

Two sinusoids with the same phase angle are ‘in phase’. Phase angle is usually given in degrees rather
than radians. We may write

/s
x(t) = Xy sin (wt + E)
Or

x(t) = X, sin (wt 4+ 90°)

wt is in radians, so this isn’t rigorously correct, but it generally easy to understand. Notice that sine and
cosine are functions that differ only by phase angle

T
cos(wt) = sin (wt + E)

Or
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T
sin(wt) = cos (wt — E)

And we can use either form depending on our phase reference.
To compare phase of sinusoids we need them to:

=>» Have the same frequency
=>» Have positive amplitude (negative = 180° phase shift)
=>» Both should be sine wave or cosine waves (90°phase difference)

You may want to review some sinusoid identities, in particular sum and difference of angles, half or
double angle formulas, sin?, cos?.

Sinusoidal Forcing Functions

If we apply a sinusoid to a linear circuit, it will produce sinusoidal steady state voltage and current (at
the same frequency as the input).

If v(t) = Asin (wt + 0) then i(t) must have the form i(t) = Bsin (wt + ¢) and to find a solution we
need only find B and ¢.

Example:

Say we have a simple RL circuit:
§ it

v(t) = V,,cos(wt) C‘i’) L

As with transient response, KVL gives us:

di(t)

L
dt

+ Ri(t) = Vy,cos(wt)

We can assume a solution for the forced response

i(t) = Acos (wt + ¢) (HHxHrEx)
= Acos(¢)cos (wt) — Asin(¢)sin (wt)

= A, cos(wt) + A,sin (wt)

We can substitute this into our D.E.

79



L(—A;wsin (wt) + A,wcos (wt)) + R(A; cos(wt) + A, sin(wt)) = V,cos(wt)
Collect terms in sin and cos:
—A;wL+RA, =0
A,wL + RA, =V,
2 equations for A; and A;. Solving these:

RV,
A= Ry ez = A0 (9

wlV,

A2 = ey e~ A (@)

The last terms above are from (******)

Asin () _ wL
Acos (@) TR

So tan(¢) =

And (Acos (¢))? + (Asin (¢))? = A% = Vo

T RZ+w?2I2

Vim

S0l) = Fr o

cos(wt — tan‘l(%L))
Which is a rather tedious approach for a simple circuit....
We can simplify analysis by using Euler’s equation:
e/®t = cos(wt) + jsin(wt)
Where j represents a complex number v/—1 (often i in other disciplines. We like i for current, so use j).
Real part: Re(e/®t) = cos(wt)
Imaginary part: Im(e/®t) = sin(wt)
Now say we have an imaginary forcing function v(t) = V,,e/®¢ (not realizable)
Then v(t) = V,cos(wt) + jV,sin(wt) from Euler’s equation.

So the complex forcing function has two parts, and from linearity and superposition we could expect a
current:

i(t) = Lycos(wt) + jl,sin(wt) = I,,el(@t+®)

So we could analyze circuit response to a function Ae/(“Dand extract response to 4 cos(wt)why? ->
properties of the exponential allow us to convert the problem to an algebraic one.

Lets return to the RL circuit, but instead of applying V,,cos(wt), we use V,,,e/“t. Forced response will
be:

i(t) = L,e/(@t+9)

With I and ¢ unknown. The D.E. is:
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L%(Imef(“’”‘i’)) + Rl e/@t+¢) =y ei(wD)
And taking the derivative
jwLL,el@H®) + Rl /(W) = elwt
e/®tappears in each term so:
jwLl,e/® + Rl e/ =V,
And:

P - L
o) = m __ Vm e—;(m ()
R +]0)L R2 + szZ

I

(convert to polar form see appendix)

Vm
RZ+w?L?

wL

So Iy = and ¢ = —tan™! (7)

However, our actual forcing function was 1}, cos(wt), so the circuit response is the real part of this
solution:

i(t) =1 (wt + ¢) = n t—t ‘1(wL)
i(t) = ILcos(wt+ @) = R2+w2LZCOS W an R

Which is identical to the previous result.
Notice the expression e/®twas in every term cancelled out. So we can write:
v(t) = Vppcos(wt + 8) = Re[V, e/ (@t+9)]
= Re[V,e/%e/®]
= Re[V,, 20 e/t]

And e/®t appears in every term of our equations, so we don’t need to write it all the time, and in fact
we will usually just write:

V=V,20 or I =I1,2¢
‘phasor notation’ ->magnitude and phase only.
Phase angle is based on cosine function so:
Acos(wt+60) > A2+ 0
Asin(wt +6) > A2+ 06 —90°
So for our RL series circuit:

di(t)
dt

L + Ri(t) = Vjycos(wt)
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Becomes:

d, . .
La(lefwf) + RIeJ®t = Vel®t

Or:
joLl+RI=Vv (%)
Then
1= L =IL,t¢ = V—mL —tan™! (m_L)
R+ jowlL VR? + w212 R
And

l = —————=C00S|wl — tan i
VR? + w?[? R

Note that phasors are usually expressed with positive magnitudes.

Analysis in equation (*) above, where time dependence is not included is called phasor or frequency
domain analysis.

Differential equations + Algebraicequations with
sinusoidalforcing function H complex numbersin
inthe time domain. frequency domain.

Circuit Elements

Resistor:
v(t) = Ri(t)
Vel @t+6y) = R oJ(wt+6))
Vel = Rl el
V =RI
R is real and doesn’t change phase between v and i.

Inductor:

(t)—Ldi
ViD= b0

, d o
Vmej(wt+9v) = La[lme](wt-l_el)]

Vel = jolLl, el
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V =jwLI]
jwLis complex and introduces a 90° phase shift between V and I. Voltage leads current by 90°.

Capacitor:

dv(t)
dt

it)y==C

; _ d .
[me](a)t+91) = CE [Vme](a)t+9,,)]

I =jwCV
jwC is complex and introduces a 90° phase shift between V and I. Current leads current by 90°.

Example:

Voltage v(t) = 24cos(377t + 75°)V is applied across a 6Q resistor. What is the current?

Phasor Voltage V = 24475 V

V _ 24275

Phasor Current ] = = = 4,275° A

Or time domain current:
i(t) =4cos(377t +75°) A
Example:
Voltage v(t) = 12c0s(377t + 20°)V is applied across a 20mH inductor. What is the current?

V. 12220° 12220°

I = = =
jwL ~ wLz90°  377(20 - 103)290°

= 1.592(20 — 90)° = 1.592(—70)° A

Time domain:

i(t) = 1.59c0s(377t —70°) A

Complex Numbers

Rectangular representation imaginary
A

A=x+jy
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Can also be written in polar coordinates

imaginary
y
A=2z.0 i
z
And
z=./x%?+y?
% .

0 =tan™! G) real
x = zcos(0)
y = zsin(60)

Sums are easy in rectangular form:
A=4+j3=5£369°
B =3+ j4=5453.1°
A+B=((4+3)+j(3+4)=7+j7=99245
Products are easy in polar form
A-B=5-5£(36.9+ 53.1)° = 25290°

Note polar form: Z;e/01 - 7,e/% = 7, - 7,e/%1e/%2 = 7,7,eJ(01+62)

Impedance and Admittance

Notice for each element, the phasor approach gave us an algebraic equation for the I-V relationship,

R
V=1-Z whereZ = jal)L depending on the element.

jwC
We can generalize and define two terminal input impedance or driving point impedance

VoV,
Z=-=-—206,+6) [Q]
I 1,

In rectangular form

Z(w) = R(w) + jX(w)
R = real (resistive) part
X = imaginary (reactive) part

Note Z depends on frequency (due to reactance), Z is complex, but is not a phasor since it is not a
sinusoid.
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For a Resistor Z =R
Inductor: Z =jwL = jX; = wL290°

Capacitor: Z=—=jXc= ﬁL -90° = —ﬁ490°

KVL and KCL are valid in the frequency domain. You can go back to analysis for series and parallel

resistance to show:

ZS:Z1+22+"'+ZN

1 _ 1 4 1 P 1
Zp Zy 7, Zn
Example Find i(t):
i(t)
_> .
v i>(t)
. E200
v i1(t)
v(t) = 120sin (377t + 60°) V é« N o
~~>°0pF X 40mH
(&
wL =377-40-10"3 = 15.08
L 53.05
wC
Phasor voltage (as cosine) V = 1204(60 — 90)° = 1204(—30)°
Find i(t) impedance:
Z, = R+ joL = 20 + j15.08 = 252(37)°
L= V. 120£(-30)" 482(—67)" 4
277, 2537y U
Find i1(t) impedance:
V. 1204(-30)° 1204(-30)° .
L =—= = = 2.264£60" A

A —j53.05  53.052(—90)°
Find total current:
I =1 +1, =484(—67)"+ 2.26£(60)°
= (1.87 — j4.42) + (1.13 + j1.957)
=3 —j2.46 = 3.882(—39.35)°
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Or we can combine impedances:

Z=R+joL)// (]wic)

= (20 + j15)//—j53

_ ((20 4 j15)(—j53)
~\ 20+,15—;53

_ ((53X15) — j1060\ _ 1325.(—53.13)°
h 70 — j38  42.94,(—62.24)°

= 30.862(—53.13 + 62.24)°
=30.86£(9.11)"

And
V 1204(—30)°
=—=————"—=13892(-39.1)°
Z 30.864(9.11)° 3.89£(=39.1)
Or
i(t) = 3.89c0s(377t —39.1°) A
Conductance

1
Recall conductance G = =

There is a similar quantity associated with impedance which is called admittance

Y = 1 = ! S
Y=G+jB
G = conductance
B = susceptance
And
G+ jB =
TIPSR x
R -X
ThenG—m and B—m

And using KVL and KCL you can show:
YP = Y1+Y2+"'+YN

1_1+1+ 1
5 1 b Yy
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So we are most likely to use admittance in parallel circuits and in series mainly focus on impedance.

Sometimes circuit operation and relationships between parameters are most easily seen with a
graphical representation -> a phasor diagram shows currents and voltages in the complex plane.

Example:

|
Ie vl

il v o

s —~ g 3

I—I+I+I—V+V+V

S — ‘R C L_R ]a)L L

jwC

If V =1,,40° (an arbitrary phase reference) then:

Vn o Vm . .
Is = 5 207+ =5 2 = 90" + V(290

imaginary
r

Al

real

I
Is can be found by summing the three currents life vectors.

imaginary
-

lg

real
I+
Is
1

1
Note at some frequency |[I.| = |Ic| or— = wC - w= 7
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Of course voltage and current can have any relative phase. Lets consider our last numerical example
which we just solved:

imaginary
y 3
I, =2.26£60°
real
V =120 - 30°
I, =484 —67°
imaginary
1
real; =1 +1,
I, = 2.26£60°
I, =484 —67°

Note you can only observe the real part of voltage or current at any time -> but it changes predictably
with time.

When we do phasor analysis we work at some instant in time, and our solution applies to all times.

It might help you to picture the phasors rotating counter clockwise in time with angular frequency w.

imaginary

1

Tw
/ real

V =1202 - 30°

As the phasor rotates, it sweeps out a sinusoidal pattern on the real axis.
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All the phasor quantities rotate together, the phase between them doesn’t change (if frequency is
fixed).

Example Find Z.,:

Z
10 Z3
° J|€ "~ 000
;7 Q. \
2 0jeQ Zy
S o |
Zeg » QR 20
20 O ,
— -i2Q

o

Z, and Z3 are easily found:
7> = 2+j4 Z3= 4+j2

Now using admittance:

1
Y1:YR+YC=I+__-2=1+0'5].
Z 1. ! =08—-04j
17y, T 1+o05 0 0Y

1 .
Y4=YL+YC=4—J_+__2_=0.25]
Z 1. 4j
4_Y4_ ]

Now we note that Z; and Z4 are in series:

Z34 is in parallel with Z; so:

1 1
Y234_=Y2+Y34=2+4}+4_2]:03_01]
Zy34=3+]

This is in series with Z; so:

Zog =7y + Zy34 = 08— 0.4 + 3 +j = 3.8 + 0.6

89



