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First and Second Order Transient Circuits 

When conditions in a circuit change, for example when you turn it on or switch operating states, its 

behavior is transient.  Circuit parameters change over some time allowing the change of state, then 

approach steady state operation.   

Note periodic signals are changing over time, but since conditions repeat at regular intervals, the circuit 

reaches a periodic (AC) steady state.  

At this stage, to analyze transients we will work in the time domain -> with equations including t or 

derivatives d/dt.   

Consider a camera flash operating from a battery: 

 

The battery charges a capacitor (fairly slowly).  When the switch is moved (depressed) the capacitor 

discharges rapidly through the lamp.  

We may be interested in the charging and discharging process: 

 

Consider the discharge circuit: 

+-VS

RS

Xenon
Flash
lamp

vc

battery

switch

t

vc(t)

vS

charge
discharge
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When the switch is closed, KCL at a node between R and C: 

𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
+

𝑣𝑐(𝑡)

𝑅𝐿
= 0 

𝑑𝑣𝑐(𝑡)

𝑑𝑡
+

1

𝐶𝑅𝐿
𝑣𝑐(𝑡) = 0 

Which has a solution  

𝑣𝑐(𝑡) = 𝑣𝑜𝑒
−𝑡

𝑅𝐿𝐶  

Exponential charging with a rate that depends on the RC product.  

First Order Transients 

In general, the problem will have the form: 

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑎𝑥(𝑡) = 𝑓(𝑡) 

And the solution can be a linear combination of forced response (including f(t)) and natural response 

(with f(t) = 0) so: 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥𝑐(𝑡) (particular and complementary) 

If we limit our cases to a constant for the forcing function (A), then a solution can also be a constant K1: 

𝑑𝑥𝑝(𝑡)

𝑑𝑡
+ 𝑎𝑥𝑝(𝑡) = 𝐴 

𝑥𝑝(𝑡) = 𝐾1 

For the homogeneous equation (=0) 

𝑑𝑥𝑐(𝑡)

𝑑𝑡
+ 𝑎𝑥𝑐(𝑡) = 0 

1

𝑥𝑐(𝑡)

𝑑𝑥𝑐(𝑡)

𝑑𝑡
= −𝑎 

You may recognize a solution  

RL
Vc(t)

switch

C
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ln(𝑥𝑐(𝑡)) = −𝑎𝑡 + 𝑐 

Or 

𝑥𝑐(𝑡) = 𝐾2𝑒−𝑎𝑡 

And we can put together a general solution: 

𝑥(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑡
𝜏  

Where K1 is the steady state solution and  is the time constant.  

And we can solve problems by fitting our initial and final conditions or by writing and solving D.E.s.  

Transient Circuit Analysis 

-differential equation approach 

-> write equation for voltage on a capacitor or current through an inductor.  

Note:  These quantities don’t change instantaneously.  

 

Write KCL: 

𝐶
𝑑𝑣(𝑡)

𝑑𝑡
+

𝑣(𝑡) − 𝑉𝑆

𝑅
= 0 

Or 

𝑑𝑣(𝑡)

𝑑𝑡
+

𝑣(𝑡)

𝑅𝐶
=

𝑉𝑆

𝑅𝐶
 

Which should have a solution 

𝑣(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑡
𝜏  

Substitute this into the differential equation: 

(
−𝐾2

𝜏
𝑒

−𝑡
𝜏 ) +

1

𝑅𝐶
(𝐾1 + 𝐾2𝑒

−𝑡
𝜏 ) =

𝑉𝑆

𝑅𝐶
 

Noting that the constant terms must be equal: 

𝐾1

𝑅𝐶
=

𝑉𝑆

𝑅𝐶
 

+-VS

R

V(t)C

t=0
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Or K1 = VS 

The exponential terms must also be equal so:  

𝐾2

𝜏
=

𝐾2

𝑅𝐶
 

Or 𝜏 = 𝑅𝐶 

We still need K2 -> consider the initial condition 

V(0) = 0V  = K1 + K2 = Vs + K2  

K2 = -Vs 

And  

𝑣(𝑡) = 𝑉𝑆 − 𝑉𝑆𝑒
−𝑡
𝑅𝐶 = 𝑉𝑆 (1 − 𝑒

−𝑡
𝑅𝐶) 

If we had an inductor instead  

 

Write KVL: 

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖(𝑡) = 𝑉𝑆 

And 

𝑖(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑡
𝜏  

(
−𝐾2

𝜏
𝑒

−𝑡
𝜏 ) +

𝑅

𝐿
(𝐾1 + 𝐾2𝑒

−𝑡
𝜏 ) =

𝑉𝑆

𝐿
 

Constant terms: 

𝐾1𝑅

𝐿
=

𝑉𝑆

𝐿
 

𝐾1 =
𝑉𝑆

𝑅
 

Exponential terms: 

𝐾2

𝜏
=

𝐾2𝑅

𝐿
 

+-VS

R

vR(t)t=0

L

i(t)
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𝜏 =
𝐿

𝑅
 

And at t =0  

𝑖(0) = 0 =
𝑉𝑆

𝑅
+ 𝐾2 

𝐾2 = −
𝑉𝑆

𝑅
 

So 

𝑖(𝑡) =
𝑉𝑆

𝑅
(1 + 𝑒−

𝑅
𝐿

𝑡) 

And if we want vR(t): 

𝑣𝑅(𝑡) = 𝑅 ∙ 𝑖(𝑡) = 𝑉𝑆 (1 + 𝑒−
𝑅
𝐿

𝑡) 

(similar to capacitor voltage in RC).  

Transient Circuit Analysis Step by Step Approach 

We still expect a solution 

𝑥(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑡
𝜏  

(x might be current or voltage) 

Note as t -> ∞    𝑒
−𝑡

𝜏 → 0   x(t) -> K1 

So if we find x(t) in steady-state (t -> ∞) with capacitor open circuit (for DC) and inductors short circuit 

(for DC), then x(t) = K1.  

Note at t = 0   x(t) = K1 + K2 

Or at some time to:  

𝑥(𝑡𝑜) = 𝐾1 + 𝐾2𝑒
−𝑡𝑜

𝜏  

So if we know the initial value x(0) or the value at some time x(to) we can also find K2. 

Often the ‘initial condition’ is just after a switch moves and is determined by the circuit before the 

switch changed.   

The time constant can be found from the Thevenin equivalent resistance at the terminals of C or L.   

𝜏 = 𝑅𝑡ℎ𝐶  or 𝜏 =
𝐿

𝑅𝑡ℎ
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Example Find i(t)  t > 0: 

 

1) We expect:  𝑣𝑐(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑡

𝜏  

2) Initial capacitor voltage t = 0- (steady state open circuit) 

• i(0-)= (36V-12V)/(2k+6k+4k) = 2mA 

• vc(0-) = 36V – 2mA X 2k = 32V 

• note i will change as soon as switch moves.  vc must be continuous.  

3) At t=0+ the switch connects 6k to ground.  So new circuit is: 

•   
4) as t -> ∞ the capacitor is again open circuit 

• i(∞) = 36V/(6k+2k) = 4.5mA 

• vc(∞)= 4.5mA X 6k = 27V  =  K1 

5) From the initial condition we know that: 

• 𝑣𝑐(0) = 𝐾1 + 𝐾2𝑒0 = 32𝑉 → 𝐾2 = 32𝑉 − 27𝑉 = 5𝑉 

6) To find 𝜏 we need the equivalent resistance seen by the capacitor 

•  
• Note the 4k resistor is still shorted out by the switch. 

• Therefore Rth = 6k//2k = 1.5k 

• So 𝜏 = 𝑅𝑡ℎ ∙ 𝐶 = 1.5𝑘 ∙ 100𝜇𝐹 = 0.15𝑠 

• And our solution 𝑣𝑐(𝑡) = (27 + 5𝑒
−𝑡

0.15) 𝑉 

• The current is then easily found by ohm’s law as: 𝑖(𝑡) =
𝑣𝑐(𝑡)

6𝑘
= 4.5 + 0.83𝑒

−𝑡

0.15𝑚𝐴  

+-36V vc(t) t=0

2kW

100mF

6kW 4kW

+- 12V

i(t)

+-36V

2kW 6kW

vc(t)

i(t)

2kW 6kW 4kW

Rth
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•  

• Note the switch doesn’t always change at t = 0 -> we may have an 𝑒
−𝑡𝑜

𝜏 term.  

• e.g. 𝑥(𝑡) = 𝑥(∞) + [𝑥(𝑡𝑜) − 𝑥(∞)]𝑒
−(𝑡−𝑡𝑜)

𝜏   

• be very careful applying formula solutions! 

Pulse Response 

Many circuits are characterized by their response to a unit impulse or unit step function.  We’ll just 

consider a step for now 

Unit step function  𝑢(𝑡) = {
0  𝑡 < 0
1  𝑡 > 0

 

And a more general form: 𝑢(𝑡) = {
0  𝑡 < 𝑡𝑜

1  𝑡 > 𝑡𝑜
 

Note steps can be used to construct other functions, such as pulses: 

𝑣(𝑡) = 𝐴[𝑢(𝑡) − 𝑢(𝑡 − 𝑇)] 

is a pulse from 0 to T 

𝑣(𝑡) = 𝐴[𝑢(𝑡 − 𝑡𝑜) − 𝑢(𝑡 − (𝑡𝑜 + 𝑇))] 

is a pulse from to to to+T 

Note we also write such functions piece wise.   

  

time

i(t)

2mA

4.5mA

5.3mA
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Example what is vo(t) t > 0?  

 

vo(t) = 0 for t < 0 (no source) 

at t=0+ io = 0 (inductor) so vo = 0V   

as  𝑡 → ∞ if pulse did not end, inductor = short, vo = 1/3 X 12V = 4V 

 

Rth = 3W ****Note this is not obvious to a lot of students, but the 2ohm resistor on the right is in 

series with the other two in parallel.  Remember a circuit is a circle!   

so 𝜏 = 𝐿
𝑅⁄ = 2

3⁄ = 0.67𝑠 

𝑣𝑜(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑡
𝜏  

𝑡 →  ∞     𝐾1 = 4𝑉 

𝑡 →  0   𝑣𝑜(𝑡) = 0 =  𝐾1 +  𝐾2 → 𝐾2  = −𝐾1 = −4𝑉 

So  

𝑣𝑜(𝑡) = 4 (1 − 𝑒−
3
2

𝑡)    0 < 𝑡 < 1𝑠 

𝑎𝑡 𝑡 = 1𝑠   𝑣𝑜(1) = 4 (1 − 𝑒−
3
2) = 3.11𝑉 

Now the pulse is turned off so eventually the voltage returns to zero.  Therefore: 

𝑣𝑜(∞) = 0 = 𝐾1 

2W vo(t)

2W

+-v(t)

2H

2W

t

v(t)

12V

0 1

2W

2W

2W

Rth
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The initial condition again gives us K2 directly since K1 is zero as 3.11V.   

𝑠𝑜    𝑣𝑜(𝑡) = 3.11𝑒−
3
2

(𝑡−1)    𝑓𝑜𝑟 𝑡 > 1𝑠 

You may want to read RLC – we will come back to this later! 

 

Design Example  

One application of capacitors is to smooth-out sudden voltage changes, since voltage in a capacitor 

cannot change instantaneously.   

Capacitors are widely used for decoupling power supplies -> that is protecting circuits from rapid voltage 

fluctuations or disturbances.  

Say we have a DC voltage source: 

 

We would like a simple circuit to isolate a load from supply fluctuations.  

We can do this with a single capacitor across the load: 

 

Say our supply changes from 𝑉𝑠 →  𝑉𝑠 + Δ𝑉𝑠 at time t = 0, and returns to Vs at t = t’ 

RS

+-VS

RS

+-VS
CD Vo

IL
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How will CD influence the fluctuation in output voltage vo? 

Voltage on CD:    𝑣𝑜(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑡

𝜏  

𝑎𝑡 𝑡 = 0    𝑣𝑜(0) = 𝐾1 + 𝐾2 = 𝑉𝑆 − 𝐼𝐿𝑅𝑆 

𝑎𝑡 𝑡 = ∞    𝑣𝑜(∞) = 𝐾1 = 𝑉𝑆 + Δ𝑉𝑆 − 𝐼𝐿𝑅𝑆 (for a step) used to get constants during a pulse 

And the time constant is just RSCD. so:  

  𝑣𝑜(𝑡) = (𝑉𝑆 + Δ𝑉𝑆 − 𝐼𝐿𝑅𝑆) − Δ𝑉𝑆𝑒
−𝑡

𝑅𝑆𝐶𝐷 

This applies until t’, when the voltage supply returns to VS. 

𝑣𝑜(𝑡′) = (𝑉𝑆 + Δ𝑉𝑆 − 𝐼𝐿𝑅𝑆) − Δ𝑉𝑆𝑒
−𝑡′

𝑅𝑆𝐶𝐷  

= 𝑉𝑆 − 𝐼𝐿𝑅𝑆 + Δ𝑉𝑜 

Or  

Δ𝑉𝑆 − Δ𝑉𝑜 = Δ𝑉𝑆𝑒
−𝑡′

𝑅𝑆𝐶𝐷  

Δ𝑉𝑆

Δ𝑉𝑆 − Δ𝑉𝑜
= 𝑒

𝑡′
𝑅𝑆𝐶𝐷  

𝑅𝑆𝐶𝐷 =
𝑡′

ln (
Δ𝑉𝑆

Δ𝑉𝑆 − Δ𝑉𝑜
)

 

Or  

𝐶𝐷 =

𝑡′
𝑅𝑆

ln (
Δ𝑉𝑆

Δ𝑉𝑆 − Δ𝑉𝑜
)

 

Note the choice of CD depends on voltage change, not magnitude.  

t
0 t’

𝑉𝑠 + Δ𝑉𝑠

𝑉𝑠

t
0 t’

𝑣𝑜 (𝑡)



78 
 

Given the expected size and length of voltage disturbances, source R and desired fluctuation in load 

voltage, we can choose CD. 

However good decoupling (  
Δ𝑉𝑜

Δ𝑉𝑆
 𝑠𝑚𝑎𝑙𝑙)requires large CD value.  

 

 

 


