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Thevenin’s and Norton’s Theorems 

Often, we may use a relatively complex circuit to deliver power to a load.  

Thevenin’s theorem says that the entire circuit (exclusive of the load) can be replaced by an equivalent 

circuit containing only an independent voltage source in series with a resistor.  

Norton’s theorem says we can replace the driving circuit by an independent current source in parallel 

with a resistance.  

 

In both cases the current-voltage relation at the load stays the same.  We can change the load value and 

the equivalent will accurately model the actual circuit!  

Consider the Thevenin equivalent first. 

Consider a complex circuit that can be split into two parts:  A and B: 

 

There is a current i between the circuits and a voltage VB at the terminals.  We could replace part B with 

a voltage source VB without changing the voltage or current at the terminals.   

 

If we were to apply superposition to the circuit, we could find the current iB due to the new source VB, 

and the current with VB = 0 (short circuit) due to other sources in circuit A iA, then the total will be 

Circuit RL

Thevenin

Norton

+-VT RL

RT

RLRN

Original
Circuit

Part 
A

Part 
B

Circuit +- VB

i



49 
 

i = iA + iB 

Setting all sources in A to zero we find:   

iB = -VB/RTH 

where RTH would be the resistance between the terminals of circuit A with all independent sources = 0, 

therefore: 

i = iA -VB/RTH  

Now if we set VB =0 (we short the terminals) then we are left with: 

i = isc = iA 

So  

i = iSC -VB/RTH   (***) 

Now say we open circuit the terminals, then VB = VOC and the current is equal to zero so:  

i = 0 = iSC -VOC/RTH   

VOC = RTH ∙ iSC 

Thus, the ratio of the open circuit voltage and the short current is related by the resistance of circuit A 

with all sources zeroed out!  We can therefore re-write (***) as: 

i = VOC/RTH -VB/RTH    

Solving for VB: 

VB = VOC -i∙RTH 

Look at the above equation.  How would you draw it as a circuit?  It is a voltage source in series with a 

resistor!  The first term tells you the voltage when no current is drawn. The second term i∙RTH indicates 

that any current drawn from the circuit will reduce the output voltage -> real circuit.  

Thevenin  

RTH = resistance looking into the terminals of driving circuit A with all sources = 0  -> Theven Resistance.  

VOC = The voltage at the terminals of circuit A when the terminals are open circuit.  

The circuit A can then be replaced by a source VOC in series with a resistor RTH:  

 

Circuit
A

Circuit
B

Circuit
B

+- VOC

RTH

Thevenin’s Theorem
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This indicates circuit A can also be replaced by a current source in parallel with a resistor RTH. 

 

Note the two circuit equivalents are different representations of the same equations.  Note they are 

equivalent only in terminal characteristics -> Norton dissipates power O.C. 

Example:  Use Thevenin’s Theorem to find Vo 

 

We can do this in stages.  We will start by considering just the part to the left of the current source: 

 

VTH = VOC = 12V  X  6k/(6k+3k) = 8V  (note this is a simple voltage divider between the 3k and 6k 

resistor… why?? We assume open circuit at the terminals so no current flow through the 2k resistor thus 

it doesn’t appear in the equation).   

RTH -> find the equivalent R between the terminals with sources = 0.  

RTH = 2k + 6k//3k = 4k    (note  12V supply becomes a short circuit) 

Our new circuit is:  

Circuit
A

Circuit
B

Circuit
B

iSC RTH

Norton’s Theorem

2kW

6kW

3kW

+-12V

4kW

8kW2mA Vo

2kW

6kW

3kW

+-12V VOC
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Now break the circuit at C/D: 

 

The new VTH = 8V + 2mA X 4k = 16V 

New RTH = 4k (current source open, voltage source short) 

Our equivalent is now: 

 

And Vo =  16V X  8k/(8k+4k+4k) = 8V and 

RTH = 8k//(4k+4k) = 4k   (voltage source again a short circuit) 

The equivalent could also be found using superposition of 2 sources.  

Note:  

  

4kW

+-8V

4kW

8kW2mA Vo

C

D

4kW

+-8V 2mA VOC

C

D

4kW

+-16V

4kW

8kW Vo

C

D

4kW

+-8V = RNIN
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IN would be the short circuit current = 8V/4k = 2mA.  

And RN would provide the same O.C. voltage: 

8V = IN ∙ RN       or       RN = 8V/2mA = 4k    

i.e. RN = RTH     ->  source transformation.  

Thevenin:  

1) Remove the load, find the open circuit voltage.  

2) Find the equivalent resistance between the output terminals with independent sources set to 

zero.  

3) If there are dependent sources present RTH may not be obvious so a ‘test source’ is connected to 

the output and RTH is found from VTEST / ITEST. (ohm’s law).  

4) Re-attach the load and complete the analysis.  

 

Thevenin Dependent and Independent Sources 

Find Vo using Thevenin’s Theorem: 

    

We will once more do this in steps.  First we will remove the 6k resistor: 

 

Using KVL: 

12V –Vx – 4k∙i  +Vx/2 = 0 

We also note that Vx = 4k∙i, therefore: 

12V –4k∙i – 4k∙i  +2k∙i = 0 

i = 2mA  

We now note that: 

4kW

4kW

+-12V 6kW Vo+-  
 

  
-+

4kW

4kW

+-12V VOC+-  
 

  
-+

i
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VOC = 4k∙i  - Vx/2 

VOC = 2k∙i  = 2k ∙ 2mA = 4V 

We have found the open circuit voltage, next we need to find RTH which isn’t obvious because we 

have dependent sources!  Thus, we will zero all independent sources and apply a test voltage and 

find the test current: 

 

We note that Vx = -VTEST 

Therefore:   

ITEST = VTEST/4k +   (VTEST/2)/4K   

***Note a good test if you can keep track of negative signs!  The 4k in series with dependent source 

sees a voltage of +VTEST/2.   

VTEST/ITEST  = (8k/3) = 2.7k  

Now we can replace the 6k resistor with our simple model to give: 

 

Vo = 4V X 6k/(2.7k+6k) = 2.75V 

Source Transformation or Source Exchange 

A current source in parallel with a resistor can be replaced by a voltage source in series with a resistor.  

This may simplify circuit analysis, for example allowing sources to be combined.   

4kW

4kW

+-  
 

  
-+

ITest

VTest

6kW

2.7kW

+-4V Vo
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The circled elements can be replaced with their Norton equivalent: 

 

This puts two resistors directly in parallel for easy combining: 

 

Now we can convert the two circled elements into a Thevenin equivalent: 

 

Which means the two circled resistors can be easily combined: 

2kW

6kW

3kW

+-12V

4kW

8kW2mA Vo

2kW

6kW3kW
12V/3k
=4mA

4kW

8kW2mA Vo

2kW

2kW4mA

4kW

8kW2mA Vo

2kW 4kW

8kW2mA Vo

2kW

+-8V
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Now converting back to Norton: 

 

We can see that we can easily combine the two current sources now.  Now using a current divider:  

Vo = 4mA X (4k/16k) X 8k = 8V 

Of course we could also have kept reducing the circuit step by step as well… 

Design Example 

We would like to design a circuit to combine a course adjustment voltage and a fine adjustment voltage 

to give an overall tuning voltage: 

Vtune = ½ Vcourse + 1/20 Vfine 

Sum of two terms -> superposition of sources?  

 

We want:  
 𝑡𝑢𝑛𝑒_𝑐
 𝑐𝑜𝑢𝑟𝑠𝑒

=
𝑅//𝑅2

𝑅1 + (𝑅//𝑅2)
=
1

 
 

𝑅//𝑅2 = 𝑅1 

We also want: 

 𝑡𝑢𝑛𝑒_𝑓

 𝑐𝑜𝑢𝑟𝑠𝑒
=

𝑅//𝑅1
𝑅2 + (𝑅//𝑅1)

=
1

 0
 

4kW 4kW

8kW2mA Vo
+-8V

4kW

8kW2mA Vo
2mA4kW

+-Vcourse

R1

+- Vfine

R2

R
-

+
Vtune
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𝑅//𝑅1 =
1

19
𝑅2 

2 equations -> 3 unknowns 

Another constraint?  Power dissipation?  

Otherwise choose ‘reasonable values’ i.e. pick at least one resistor arbitrarily.  

 

Maximum Power Transfer 

In some applications we are interested in transferring the maximum possible power to a load element or 

circuit.  The Thevenin equivalent circuit can aid us with this.  

 

𝑃𝑙𝑜𝑎𝑑 = 𝑖2𝑅𝐿 = (
 

𝑅𝑆 + 𝑅𝐿
)
2

𝑅𝐿 

What value of RL makes this a maximum? 

𝑑𝑃𝑙𝑜𝑎𝑑
𝑑𝑅𝐿

= 0 = (
 

𝑅𝑆 + 𝑅𝐿
)
2

−  𝑅𝐿
 2

(𝑅𝑆 + 𝑅𝐿)
3

 

 𝑅𝐿
𝑅𝑆 + 𝑅𝐿

= 1 

 𝑅𝐿 = 𝑅𝑆 + 𝑅𝐿 

𝑅𝐿 = 𝑅𝑆 

Maximum power transfer occurs when the load resistance matches the source resistance.  

Example 

Find RL for maximum power transfer.   

RL

RS

+-V

Source of Power

Load 
Element
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We start by removing RL and finding the Thevenin equivalent.  Note we only need RTH to find RL and we 

don’t need VOC unless we want to know the VALUE of the power transferred to the load.    

 

i1 = 2mA 

-3V – 3k (i2 – i1 ) – 6ki2 = 0 

3V -6V + 9k i2 = 0 

i2 = 3V/9k = 0.33mA 

Then VOC = 6ki2 +4ki1 = 6k X 0.33mA + 4k X 2mA = 10V 

Now to find RTH, voltage source -> 0 (short), current source -> open 

  

3kW

6kW

2mA

+-3V

4kW

RL

3kW

6kW

2mA

+-3V

4kW

VOC

i1

i2

3kW

6kW

4kW

RTH
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RTH = 4k +  6k//3k = 6k 

So RL = 6k for max power.  

 

P = i2 6k = (10V/12k)2 6k = 4.17mW 

  

RL=6kW

RS=6kW

+-10V
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Capacitors 

We now have all the basic tools for circuit analysis, but so far the only components we have are sources 

and elements that dissipate energy -> resistors.  

We can do some interesting things with elements that store energy  ->  inductors and capacitors 

Capacitors -  A capacitor is a circuit element composed of two conducting surfaces separated by a non-

conducting dielectric material.  

Schematic symbol: 

 

Often capacitor electrodes are rolled to give a high capacitance to volume ratio.  Different dielectrics are 

used depending on the application.   

-ceramic 

- electrolytic  (Al, Ta) 

-mica   

-polyester 

And some new high capacity materials.  

Capacitance is charge / potential 

Coulombs/volt  =  farads (F) 

(after Michael Faraday) 

Typical values are F to pF, although recently energy storage capacitors up to a few 100F have become 

available.  

➔ Voltage rating  -> breakdown  or catastrophic failure.  

 

Parallel plate capacitor is commonly analyzed 

𝐶 =
𝜖 ∙ 𝐴

𝑑
 

Two plates of area A are separated by distance d by a dielectric with permittivity 𝜖.  

Consider the 100F double layer capacitor mentioned above with an air gap 𝜖 = 𝜖𝑜of distance 10-4m.  

100𝐹 =
8.85𝑋10−12 ∙ 𝐴

10−4𝑚
 

-

+
C Cor
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A = 1.148X109m2 or 443 square miles! 

Note capacitance relates applied voltage to stored charge: 

𝑞 = 𝐶  -> energy stored in electric field 

And we know current 

𝑖 =
𝑑𝑞

𝑑𝑡
=
𝑑(𝐶𝑣)

𝑑𝑡
 

So 

𝑖 = 𝐶
𝑑𝑣

𝑑𝑡
 

For constant capacitance or turning it around: 

𝑑𝑣 =
1

𝐶
𝑖𝑑𝑡 

And 

𝑣(𝑡) =
1

𝐶
∫ 𝑖(𝑡)
𝑡

−∞

𝑑𝑡 

And since we may only know a condition at some initial time 

𝑣(𝑡) =
1

𝐶
∫ 𝑖(𝑡)
𝑡𝑜

−∞

𝑑𝑡 +
1

𝐶
∫ 𝑖(𝑡)
𝑡

𝑡𝑜

𝑑𝑡 

𝑣(𝑡) = 𝑣(𝑡𝑜) +
1

𝐶
∫ 𝑖(𝑡)
𝑡

𝑡𝑜

𝑑𝑡 

Power delivered to the capacitor 

𝑝(𝑡) = 𝑣(𝑡) ∙ 𝑖(𝑡) 

= 𝑣(𝑡)𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 

And the energy can be found by integrating: 

𝑝(𝑡)𝑑𝑡 = 𝐶𝑣(𝑡)𝑑𝑣 

𝜔𝑐(𝑡) = ∫ 𝑝(𝑡)
𝑡

−∞

𝑑𝑡 

= 𝐶∫ 𝑣(𝑡)
𝑡

−∞

𝑑𝑣(𝑡) 

𝜔𝑐(𝑡) =
1

 
𝐶𝑣2(𝑥) |

𝑣(𝑡)

𝑣(−∞)
=
1

 
𝐶𝑣2(𝑡) 
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Also from q = CV : 

𝜔𝑐(𝑡) =
1

 

𝑞2(𝑡)

𝐶
 

Since 𝑖 = 𝐶
𝑑𝑣

𝑑𝑡
 , for a constant (DC) voltage there is no capacitor current in the steady state -> a capacitor 

is an open circuit to DC or ‘blocks’ DC.   

****think about this for a moment…what is a capacitor physically?  -> it is a broken wire!!!   

Note however there is an initial transient current when DC is switched on or off.  Also since  

𝑝(𝑡) = 𝑣(𝑡)𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 

An instantaneous voltage change would require infinite current and power -> not physically possible.  -> 

capacitor voltage must be continuous.  

Example: 

The voltage across a 5F capacitor is given by: 

 

What is the current? 

𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 

𝑖(𝑡) = 5𝜇𝐹
 4 

6𝜇𝑠
=  0𝜇𝐴 

For 0 ≤ t ≤ 6s.  

𝑖(𝑡) = 5𝜇𝐹
− 4 

 𝜇𝑠
= −60𝜇𝐴 

For 6s ≤ t ≤ 8s.  

i(t) = 0A  for t > 8 s. 

Energy stored at t = 6s depends only on voltage at that instant (not how it got there). 

 

𝐸 =
1

 
𝐶𝑣2 =

1

 
∙ 5𝜇𝐹 ∙  4 2 = 1.44𝑚𝐽 

t(s)

v(t)

24V

6 8
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Series Capacitors 

We can find how to combine elements from KVL, KCL, and the I-V relationship.  

 

KVL:  v(t) = v1(t) + v2(t) + v3(t) + … + vN(t) 

And 

𝑣𝑖(𝑡) = 𝑣𝑖(𝑡𝑜) +
1

𝐶𝑖
∫ 𝑖(𝑡)
𝑡

𝑡𝑜

𝑑𝑡 

(same current in each capacitor)  So: 

𝑣(𝑡) =∑𝑣𝑖(𝑡𝑜)

𝑁

𝑖=1

+∑
1

𝐶𝑖
∫ 𝑖(𝑡)
𝑡

𝑡𝑜

𝑑𝑡

𝑁

𝑖=1

 

=
1

𝐶𝑆
∫ 𝑖(𝑡)
𝑡

𝑡𝑜

𝑑𝑡 + 𝑣(𝑡𝑜) 

Where 

𝑣(𝑡𝑜) =∑𝑣𝑖(𝑡𝑜)

𝑁

𝑖=1

 

And 

1

𝐶𝑆
=∑

1

𝐶𝑖

𝑁

𝑖=1

=
1

𝐶1
+

1

𝐶2
+

1

𝐶3
+⋯+

1

𝐶𝑁
 

➔ Same current, so each capacitor acquires the same charge in a given time.  

Parallel Capacitors 

 

KCL:   i(t) = i1(t) +i2(t)+ i3(t) + … + iN(t) 

+-v(t)

v1(t) v2(t) v3(t) vN(t)

C1 C2 C3 CN

+-v(t)

i1(t) i2(t) i3(t) iN(t)

C1 C2 C3 CN
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And 

𝑖𝑖(𝑡) = 𝐶𝑖
𝑑𝑣𝑖(𝑡)

𝑑𝑡
 

But vi(t) = v(t) for all Ci  so: 

𝑖(𝑡) = 𝐶1
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝐶2

𝑑𝑣(𝑡)

𝑑𝑡
+ 𝐶3

𝑑𝑣(𝑡)

𝑑𝑡
+ ⋯+ 𝐶𝑁

𝑑𝑣(𝑡)

𝑑𝑡
 

So 

𝑖(𝑡) = 𝐶𝑃
𝑑𝑣(𝑡)

𝑑𝑡
 

Where: 

𝐶𝑃 =∑𝐶𝑖

𝑁

𝑖=1

 

Example Find the Equivalent Capacitance 

 

We first note that the two circled caps are in parallel Cp = 2F + 4F = 6F.  

 

We next note that these two circled caps are in series:  Cs = (1/6F +1/3F)-1=2F 

This leaves us with: 

Ceq

3F

2F 4F

3F

2F

12F

Ceq

3F

6F

3F

2F

12F
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We note the two parallel caps have an overall capacitance of 2F + F = 4F.  

Thus we are left with a 3 F, 4F, and 12F in series:  

Ceq = (1/12 + 1/4 + 1/3 )-1 = 1.5F 

 

Inductors  

An inductor consists of a conducting wire usually in the form of a coil.  

   

Typically categorized by the core material around which the wire is wound.  

➔ Air and nonmagnetic materials 

➔ Iron 

➔ Ferrite (iron, iron oxide -> ferromagnetic)  

As with capacitors materials depend on value and loss requirements.  

Inductance is measured in Henrys (after Joseph Henry) -> volt/s per ampere.  

𝑣(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 

Note that current cannot change instantaneously. We can also write this formula as: 

𝑖(𝑡) =
1

𝐿
∫ 𝑣(𝑡)
𝑡

−∞

𝑑𝑡 = 𝑖(𝑡𝑜) +
1

𝐿
∫ 𝑣(𝑡)
𝑡

𝑡𝑜

𝑑𝑡 

Typical values are H to mH.   

Inductors store energy in a magnetic field created by the current.  Power is still given by:  

Ceq

3F

2F

12F

2F

L
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𝑝(𝑡) = 𝑣(𝑡) ∙ 𝑖(𝑡) 

= 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
∙ 𝑖(𝑡) 

Or energy is given by: 

𝜔𝐿(𝑡) = ∫ 𝑝(𝑡)
𝑡

−∞

𝑑𝑡 

𝜔𝐿(𝑡) = ∫ 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
∙ 𝑖(𝑡)

𝑡

−∞

𝑑𝑡 =
1

 
𝐿𝑖2(𝑡) 

Short circuit for DC (ideal, some small R).  THINK about this, and inductor is just a wire!!! 

Note: 

𝑝(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
∙ 𝑖(𝑡) 

So power is proportional to the instantaneous change in i(t).  If di/dt goes to infinity power goes to 

infinity which is not possible.  Therefore, an inductor requires continuity of current.  

Inductors are indispensable in tuned circuits and many power applications.  – motors, transformers and 

solenoids (actuators).   

Example 

The voltage measured across a 200mH is v(t) = (1-3t)e-3t mV for t ≥ 0 and zero for t < 0.  What is the 

current and power? 

𝑖(𝑡) =
1

𝐿
∫ 𝑣(𝑡)
𝑡

−∞

𝑑𝑡 

=
103

 00
∫ (1 − 3𝑡)𝑒−3𝑡
𝑡

0

𝑑𝑡 

= 5(∫ 𝑒−3𝑡
𝑡

0

𝑑𝑡 − 3∫ 𝑡𝑒−3𝑡
𝑡

0

𝑑𝑡) 

= 5 [−
1

3
𝑒−3𝑡 |

𝑡

0
− 3 ((−

1

3
𝑡𝑒−3𝑡) − (

1

9
𝑒−3𝑡)) |

𝑡

0
] 

= 5 [−
1

3
𝑒−3𝑡 +

1

3
+ (𝑡𝑒−3𝑡 − 0) +

1

3
𝑒−3𝑡 −

1

3
] 

𝑖(𝑡) = 5𝑡𝑒−3𝑡𝑚𝐴    𝑡 ≥ 0  

𝑝(𝑡) = 𝑣(𝑡) ∙ 𝑖(𝑡) = 5𝑡𝑒−3𝑡 ∙ (1 − 3𝑡)𝑒−3𝑡 = 5𝑡(1 − 3𝑡)𝑒−6𝑡𝜇𝑊 
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Notice i(t) is positive for t > 0.  

v(t) is positive for di/dt > 0 and negative for di/dt < 0.   

i(t) positive, p(t) has the sign of v(t) starting positive (storing) and ending negative (releasing).  

 

Series Inductors 

 

KVL:   

𝑣(𝑡) = 𝑣1(𝑡) + 𝑣2(𝑡) + 𝑣3(𝑡) + ⋯𝑣𝑁(𝑡) 

time

i(t)

time

v(t)

time

p(t)

+-v(t)

v1(t) v2(t) v3(t) vN(t)

L1 L2 L3 LN
i(t)
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= 𝐿1
𝑑𝑖

𝑑𝑡
+ 𝐿2

𝑑𝑖

𝑑𝑡
+ 𝐿3

𝑑𝑖

𝑑𝑡
+ ⋯+ 𝐿𝑁

𝑑𝑖

𝑑𝑡
 

Since i is the same for each: 

𝑣(𝑡) =∑𝐿𝑖

𝑁

𝑖=1

∙
𝑑𝑖

𝑑𝑡
= 𝐿𝑆 ∙

𝑑𝑖

𝑑𝑡
 

Where: 

𝐿𝑆 =∑𝐿𝑖

𝑁

𝑖=1

 

Parallel Inductors 

 

KCL:   i(t) = i1(t) +i2(t)+ i3(t) + … + iN(t) 

where 

𝑖𝑖(𝑡) = 𝑖𝑖(𝑡𝑜) +
1

𝐿𝑖
∫ 𝑣(𝑡)
𝑡

𝑡𝑜

𝑑𝑡 

v(t) is the same across each Li so: 

𝑖(𝑡) =∑𝑖𝑖(𝑡𝑜)

𝑁

𝑖=1

+∑
1

𝐿𝑖
∫ 𝑣(𝑡)
𝑡

𝑡𝑜

𝑑𝑡

𝑁

𝑖=1

 

=
1

𝐿𝑃
∫ 𝑣(𝑡)
𝑡

𝑡𝑜

𝑑𝑡 + 𝑖(𝑡𝑜) 

Where 

𝑖(𝑡𝑜) =∑𝑖𝑖(𝑡𝑜)

𝑁

𝑖=1

 

And 

1

𝐿𝑃
=∑

1

𝐿𝑖

𝑁

𝑖=1

=
1

𝐿1
+

1

𝐿2
+

1

𝐿3
+⋯+

1

𝐿𝑁
 

Similar to resistors.   

+-v(t)

i1(t) i2(t) i3(t) iN(t)

L1 L2 L3 LN

i(t)


