Carleton University ELEC 2607 MIDTERM March 6, 2009

Open book.

In the spirit of the code of honor of Carleton University I solemnly declare this examination is completely my own work, and I did not aid my answer to any question by dishonorable means.

NAME_____STUDENT No_____

Write answers on the question sheet. Use additional paper if necessary. Attempt all questions.

- 1 General
- a) Find the \sum of \prod for the following expression: $F = (A + B)(B + \overline{C})(\overline{A} + D)$. (10%)
- b) Redraw the following circuit using only NAND, and NOR gates and inverters. (10%)

c) Simplify the following expression: $G = \overline{E}A\overline{B}C\overline{D} + \overline{A}B\overline{D}CF + \overline{A}B\overline{D}CF + \overline{A}BCD + ABCD + A$

- d) How many flip flops are required to make a finite state machine with 5 states? Is this the maximum number of states that can be made with this number of flip flops? Explain. (5%)
- e) Implement the following three functions on the PLA given below: (10%)

$$F = AB + ACD + \overline{B}D$$

$$G = CD + AB + AC\overline{B}D$$

$$H = ACD + \overline{B}D + A$$

2 Draw the Waveforms (15%)

Plot all of the waveforms for the circuit below. The input rst is an asynchronous reset signal.

3 Five Variable Maps (20%)

Circle the maps below to determine an optimal expression for F.

Map of E										
				2						
AB 00 1		00	01	11	10					
	00	1			1					
	01		1			-B				
Α-	11		1	1						
	10	1			1					

4 Multi Variable Maps (20%)

Circle the following three maps to provide the lowest gate count possible.

Map of F										
AB 00 1 1 d 1										
	CI AR	00	01	11	10					
	00	1	1	d	1					
01			1	d		 -B				
Α-	11		1	1						
	10		d	1	1					
	•									

