Carten Unirestily ELEC 2607 MIDTERM March 6,2009

Open book.
In the spirit of the code of honor of Carleton University I solemnly declare this examination is completely my own work, and I did not aid my answer to any question by dishonorable means.
NAME \qquad STUDENT No \qquad
Write answers on the question sheet. Use additional paper if necessary. Attempt all questions.
1 General
a) Find the \sum of \prod for the following expression: $F=(A+B)(B+\bar{C})(\bar{A}+D) \cdot(10 \%)$
b) Redraw the following circuit using only NAND, and NOR gates and inverters. (10\%)

c) Simplify the following expression: $G=\bar{E} A \bar{B} C \bar{D}+\bar{A} B \bar{D} C F+\bar{A} B \bar{D} C \bar{F}+\bar{A} B C D+A B C D+A B C \bar{D}+A \bar{B} C D+$ $A \bar{B} C \bar{D} E$. Hint: There may be a couple of variables that are "easier" then the rest. (10\%)
d) How many flip flops are required to make a finite state machine with 5 states? Is this the maximum number of states that can be made with this number of flip flops? Explain. (5\%)
e) Implement the following three functions on the PLA given below: (10\%)

$$
\begin{aligned}
& F=A B+A C D+\bar{B} D \\
& G=C D+A B+A C \bar{B} D \\
& H=A C D+\bar{B} D+A
\end{aligned}
$$

\qquad
\qquad

2 Draw the Waveforms (15\%)
Plot all of the waveforms for the circuit below. The input rst is an asynchronous reset signal.

3 Five Variable Maps (20\%)
Circle the maps below to determine an optimal expression for F .

4 Multi Variable Maps (20\%)
Circle the following three maps to provide the lowest gate count possible.

